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ABSTRACT 

Despite the theoretical link between the ecology and the population genetics of species, little 

empirical evidence is available that corroborates the association.  Here, I examined genetic variation 

in 40 co-distributed species of lowland Neotropical rainforest birds that have populations isolated 

on either side of the Andes, Amazon River, and Madeira River.  I found widely varying levels of 

genetic divergence among these taxa between the same biogeographic barriers.  My investigation of 

the extent to which ecological traits predicted the level of cross-barrier divergence revealed a 

significant relationship between the forest stratum at which a species forages and the level of 

within-population and cross-barrier genetic differentiation.  Canopy species had statistically lower 

divergence values across the Andes and two riverine barriers than did understory birds.  I 

hypothesize that the association reflects an effect of dispersal propensity on the geographic 

structuring of genetic variation, and, consequently, on the ancestral and extant effective population 

sizes of each species.  This is the first large-scale avian comparative study to document a significant 

association between ecological traits of a species and its level of genetic differentiation.  I examined 

further the contrasting genetic patterns revealed previously by comparing the range-wide 

mitochondrial (mtDNA) phylogeography of two canopy and two understory species of lowland 

Neotropical rainforest birds.  All species exhibited divergence between cross-Andean populations.  

Unlike canopy species, understory birds were structured at smaller spatial scales, particularly across 

riverine barriers of the Amazon basin.  Surprisingly, estimates of isolation-by-distance, a proxy for 

dispersal propensity, are similar within areas of endemism for all taxa suggesting levels of gene 

flow are comparable through contiguous habitat in canopy and understory species.  Lastly, I 

examined the multilocus phylogeography of three previously studied species with contrasting 

mtDNA patterns to investigate the role of historical demography in cross-Andean divergence.   



 vi 

Demographic estimates using an isolation-with-migration model suggest among-taxa variance in 

cross-Andean divergences reflects a history of staggered isolation versus a simultaneous isolating 

event.  Nuclear sequence data reveal asymmetrical gene flow in two species marked by relatively 

shallow cross-Andean divergence, further evidence of differential effectiveness of the Andes as a 

barrier to gene flow among co-distributed taxa.  
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CHAPTER 1:  INTRODUCTION 

 The rich landscape of the equatorial Neotropics has a dynamic history that offers 

unparalleled opportunities to explore the changing earth’s role in shaping the evolution of birds. The 

Andean Cordillera effectively isolates tracts of lowland tropical rainforest west of the Andes from 

the expansive complementary forest of the Amazon Basin.  This divide is relatively young as the 

northern Andes were only half their present elevation approximately 4 million years ago (Guerrero 

1997; Gregory-Wodzicki 2000).  This recent orogeny rerouted major watercourses to form the 

modern eastern-flowing Amazonian drainage (Hoorn et al. 1995; Campbell et al. 2006).  These 

geographical features, the Andes and the river courses of Amazonia, are critical in the divergence of 

populations and the speciation process since they often form taxonomic boundaries for a wide range 

of lowland rainforest biota (Chapman 1917; Chapman 1926; Haffer 1969; Haffer 1974; Cracraft 

1985; Cracraft and Prum 1988).  In addition, the uplift of the Panamanian Isthmus approximately 3 

million years ago united tracts of lowland tropical rainforest providing an intercontinental corridor 

for overland dispersal (Duque-Caro 1990; Coates and Obando 1996; Coates et al. 2004).  The 

complex physiography of the Neotropics is thought to have promoted the recent burst of faunal 

differentiation and, consequently, generated the highest alpha and gamma species diversity of any 

ecogeographic unit (Pearson 1977; Terborgh 1980a; Remsen and Parker 1983; Terborgh et al. 

1990).  

 For my dissertation, I examined this diversity using a comparative phylogeographic 

approach, which involves examining intraspecific patterns of genetic structure across multiple co-

distributed taxa (Avise et al. 1987a; Bermingham and Moritz 1998; Avise 2000; Arbogast and 

Kenagy 2001).  The overarching goal was to examine processes, both recurrent and historical, 

associated with biogeography, ecology, and demography in shaping spatiotemporal patterns of 
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genetic variation.  To do this, I investigated similarities in across-taxon patterns of genetic variation 

to detect influences at regional levels that may signify shared responses to historical events.  In 

addition, I employed a large number of species and examined across-taxa differences in genetic 

variation to statistically test for species-specific correlates of the observed variance in genetic 

parameters.  For my study taxa, I concentrated on co-distributed species of lowland tropical 

rainforest birds with cross-Andean populations.  This design allowed me to focus on a community 

of relatively closely related species that have shared biogeographic history, comparable rates of 

evolution, and fewer differences in life-history traits, thus allowing for more robust tests of 

relationship between ecology and evolution (Bohonak 1999).  

 All three chapters of my dissertation were aimed at addressing the different processes 

shaping patterns of geographic variation with special emphasis on cross-Andean divergence.  The 

partitioning of chapters is based largely on the scale of the dataset and, thus, the question being 

addressed.  In the first chapter, I examine species-specific correlates of cross-Andean mitochondrial 

(mtDNA) divergence for a taxonomically- and ecologically-diverse assemblage of 40 lowland 

rainforest species.  In the second chapter, I selected four taxa (two understory and two canopy) with 

relatively large range-sizes (Mexico to Amazonia) and with differing levels of cross-Andes genetic 

differentiation to explore continental-scale phylogeographic patterns in mtDNA.  In the final 

chapter, I use multilocus, multi-allelic nuclear data to examine the comparative phylogeography of 

three species that have widely varying cross-Andes divergences in mtDNA.  The multilocus dataset 

allowed me to better address the error associated with coalescent and demographic uncertainties 

(Rosenberg and Nordborg 2002). 
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CHAPTER 2:  ECOLOGY PREDICTS LEVELS OF GENETIC  
DIFFERENTIATION IN NEOTROPICAL BIRDS 

 
INTRODUCTION 

 The ecology of a species influences the effective size of populations and the pattern of gene 

flow among them (Caballero 1994; Turner and Trexler 1998; Bohonak 1999), which, in turn, 

determines both the amount and spatiotemporal distribution of neutral genetic variation found 

within and between populations (Wright 1951; reviewed in Charlesworth et al. 2003).  Despite the 

theoretical link between the ecology and population genetics of species (Avise et al. 1987b; Palumbi 

1992), little empirical evidence corroborates the association (Loveless and Hamrick 1984; Hamrick 

and Godt 1996).  This is partly because the amount of intraspecific genetic variation, both within 

and between populations, is influenced by past and present demography as well as a multitude of 

confounding, potentially opposing, evolutionary processes including genetic drift, gene flow, and 

mutation (Slatkin 1987; Bossart and Prowell 1998).  And because population genetic studies 

traditionally focus on a single taxon, any discrimination of mechanistic hypotheses based on 

species-specific characteristics is not possible.  A further difficulty is that ecological data are often 

insufficient to test hypotheses regarding the influence of ecology on spatial and temporal patterns of 

population genetic differentiation (Bohonak 1999).  Because of these limitations, the population 

genetic consequences of ecological variables are often restricted in empirical studies to post hoc 

discussions with multiple interpretations of the data (Croteau et al. 2007; Milot et al. 2008).  Here, I 

directly address the influence of ecology on evolution by employing a comparative approach. 

 Comparisons across taxa, particularly among closely related species, provide a means of 

testing the influence of ecological variables on population genetic differentiation (Turner and 

Trexler 1998).  By treating each species as an independent measure of the ecological correlate of 

interest, it is possible to evaluate statistical associations between ecological factors and levels of 
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genetic differentiation.  The comparative method has typically been used to assess patterns of 

genetic variation across a relatively small number of species (Dawson et al. 2002; Brouat et al. 

2003; Whiteley et al. 2004; Goetze 2005; Lourie et al. 2005; Richards et al. 2007).  However, the 

advantages of this approach are more apparent in comparisons across large numbers of taxa 

(Peterson and Denno 1998; Turner and Trexler 1998; Bohonak 1999; Moller et al. 2008). 

 I make use of two large biogeographic barriers to lowland birds in northern South America: 

the Andes Mountains and the Amazon River system.  Both barriers are known to influence the 

genetic structuring of bird populations.  Their effect on genetic differentiation is reflected in 

taxonomy, with most lowland bird populations on either side of the Andes, the Amazon River, and 

the Amazon's larger tributaries recognized as distinct taxa (Chapman 1917; Chapman 1926; Haffer 

1969; Haffer 1974; Traylor 1979; Cracraft 1985; Cracraft and Prum 1988).  The Andes extend in a 

north-south axis along the entire western margin of South America and effectively isolate the 

lowland tropical rainforests west of the Andes (trans-Andean region) from those east of the Andes 

(cis-Andean; Figure 2.1).  The youngest range of the Northern Andes, the Eastern Cordillera, serves 

as the primary Andean barrier between lowland trans-Andean and cis-Andean taxa.  The range, 

which experienced rapid uplift 10 million years ago and was no more than half of its present 

elevation ~4 million years ago (Guerrero 1997; Gregory-Wodzicki 2000) divided the once 

continuous lowland rainforests of northwestern South America (Gentry 1989; Daly and Mitchell 

2000; Dick et al. 2004) and rerouted Amazonian watercourses to form the modern eastern-flowing 

drainage (Hoorn et al. 1995; Campbell et al. 2006). 

 Previous studies of lowland tropical rainforest birds revealed that these physical barriers 

partition genetic variation of co-distributed taxa similarly (Capparella 1988; Capparella 1991; 

Brumfield and Capparella 1996; Hackett and Lehn 1997; Marks et al. 2002; Pereira and Baker 
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2004; Cheviron et al. 2005b; Eberhard and Bermingham 2005; Ribas et al. 2005).  Despite this 

spatial congruence, the interspecific variation in levels of genetic differentiation between allopatric 

lineages diverging in concert due to the same emergent barriers is substantial.  Disparity in the 

temporal patterns of genetic differentiation among taxa thought to have been simultaneously 

affected by a single barrier has been observed in multiple studies (Bermingham et al. 1997; 

Knowlton and Weigt 1998; Avise 2000; Marko 2002; Lessios et al. 2003; Hickerson et al. 2006b).  

Some studies have interpreted the large variance in genetic divergence values across a common 

barrier to reflect multiple vicariant events (Leache et al. 2007), but the combined effects of the 

coalescent process (Donnelly and Tavare 1995), molecular rate heterogeneity (Wu and Li 1985), 

and demography (Edwards and Beerli 2000) can produce a similar pattern (i.e. large variance) with 

just a single vicariant event (Hickerson et al. 2006a).  Here, I examined how the variance in levels 

of genetic differentiation among the 40 species is partitioned with respect to these factors. 

METHODS 
 

Study Species and Molecular Data Collection 

 I examined 40 species of Neotropical birds with cross-Andean distributions (Appendix A).  

All breed regularly in terra firma forest (tropical lowland evergreen forest; using the classification 

of Stotz et al. 1996).  To maximize taxonomic diversity, I selected species representing 20 families 

and seven orders.  Within the major clades of birds (e.g. thamnophilid antbirds), I included species 

with differing ecologies (e.g. canopy versus understory) where possible to balance study design.  A 

practical consideration in selecting the 40 species was that each be well represented in museum 

genetic resource collections.  Levels of genetic divergence were measured across three physical 

barriers:  1) the Andes; 2) the Amazon River; and 3) the Madeira River, a major tributary  
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Figure 2.1 Present distribution of lowland moist forest (dark gray) in northern South America (Eva 
et al. 1999).  Mountains above 2000 m elevation are in black.  Sampling localities of the 40 study 
taxa confined to four areas of endemism described by Cracraft (1985): (A) Chocó; (B) Napo; (C) 
Inambari; and (D) Rondonia.    
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of the Amazon (Figure 2.1).  Where species’ ranges and holdings in collections allowed, I sampled 

individuals from populations on opposite sides of each of the three barriers of interest (Appendix 

B).  All tissues used in this study have accompanying voucher specimens. 

 Sequences from the mitochondrial protein-coding cytochrome b (cyt b) gene were used to 

estimate within- and between-population genetic differentiation for each species.  There are good 

statistical reasons for using multi-locus instead of single-locus measurements of genetic diversity in 

reducing the variance of population genetic parameter estimates (Brumfield et al. 2003), but I opted 

to maximize taxonomic diversity at the cost of measurement precision within each species.  This 

was justified in that the statistical effect on my tests was to make them more conservative.  Any 

statistical associations between ecological and genetic parameters would have to overwhelm the 

error associated with the single-locus estimates of genetic diversity. 

 I extracted DNA from ~25 mg of tissue using the Qiagen DNeasy Tissue Kit (QIAGEN, 

Inc., Valencia, CA).  The polymerase chain reaction (PCR) was used to amplify cytochrome b for 

each individual.  PCR amplifications (25 µL) consisted of: 2.5 µL template DNA (~50 ng), 0.3 µL 

each primer (10 mM, Appendix A), 0.5 µL dNTPs (10 mM: 2.5 mM each dATP, dTTP, dCTP, 

dGTP), 2.5 µL 10X with MgCl2 reaction buffer (15 mM), 0.1 Taq DNA polymerase (5 U/µL 

AmpliTaq, Applied Biosystems Inc., Foster City, CA), and 18.7 µL sterile dH2O. PCR temperature 

profiles consisted of an initial denaturation of 2 min at 94°C followed by 35 cycles of 30 sec at 

94°C, 30 sec at 45-48°C, and 2 min at 72°C, with a final extension of 5 min at 72°C.  Double-

stranded PCR products were purified using 20% poly-ethylene glycol (PEG), then cycle-sequenced 

using 1.75 µL 5X sequencing buffer (ABI), 1 µL sequencing primer (10mM, Appendix A), 2.25 µL 

template, 0.35 µL Big Dye Terminator Cycle-Sequencing Kit version 3.1 (ABI), and 1.65 µL sterile 

dH2O for a total volume of 7 µL.  Cycle-sequenced reactions were cleaned using Sephadex (G-50 
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fine) columns and analyzed on an ABI 3100 Genetic Analzyer.  Consensus sequences were 

compiled from both forward and reverse sequences.  Contigs for each individual were assembled 

and edited using Sequencer version 4.6 (GeneCodes, Ann Arbor, MI) and the entire length of each 

sequence was examined by eye to confirm base calls.  The cyt b-coding region was checked in 

Sequencer 4.6 for the presence of stop codons to confirm open reading frames. 

Estimating Levels of Cross-Barrier Genetic Divergence 

 PAUP* 4.0b10 (Swofford 2001) was used to calculate three pairwise genetic distance 

measures between individuals composing populations: (1) uncorrected (p-distance); (2) the HKY85 

finite-sites substitution model (Hasegawa et al. 1985); and the best-fit finite-sites substitution model 

(Table 2.2) determined using the BIC test implemented in ModelTest 3.8 (Posada and Crandall 

1998). For each species, pairwise genetic distances between individuals were averaged to provide a 

single species-level estimate of genetic distance across the three physical barriers of interest (Andes, 

Amazon River, and Madeira River).  Due to sampling and range limits, the number of species 

incorporated in each of the three comparisons varied (Table 2.4). 

Multi-predictor Models of Genetic Divergence 

 To assess ecological correlates of genetic differentiation I examined species-specific 

attributes associated with habitat, diet, and relative abundance (Appendix A). Because an 

organism’s dispersal potential determines the effectiveness of a physical barrier (Mayr 1963) I also 

included ecological variables that are indirectly tied to dispersal propensity.  All natural history and 

ecological variables were extracted from Stotz et al. (1996). 

 Maximum Elevation.  In considering the Andes as a barrier, I included the maximum 

elevation of a species’ known geographic distribution as a continuous variable.  Although untested 

empirically, one might expect lowland species whose distribution extends to higher elevations (e.g. 
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the Andean foothills) to more readily traverse mountain barriers relative to species restricted to 

lower elevations.  

 Várzea.  Capparella (1991) suggested that avian species inhabiting várzea forest (flooded 

tropical evergreen forest) disperse more readily across rivers relative to species of terra firma forest 

(non-flooded).  This prediction was based on the river-delineated patterns of genetic differentiation 

revealed in understory species of terra firma forest, as well as anecdotal observations concerning 

the lack of phenotypic variation in populations along opposite banks of the Amazon River in bird 

species of várzea forest.  Additional support for this prediction comes from Xiphorhynchus 

woodcreepers, where species inhabiting várzea forest were genetically undifferentiated across 

riverine barriers compared to closely related species restricted to terra firma forest (Aleixo 2004; 

Aleixo 2006).  Therefore, I included as a binary variable whether a species uses várzea forest as a 

preferred habitat in addition to terra firma forest. 

 Habitat Breadth.  The number of different habitats a species occupies may be positively 

correlated with dispersal propensity.  The idea that habitat generalists are more likely than habitat 

specialists to cross ecotones or gaps in habitats is supported by several studies (reviewed in Harris 

and Reed 2002).  I counted the total number of preferred habitats (defined as habitat types where a 

species occurs or breeds in regularly across a significant portion of its geographic distribution) for 

each species.  These ordinal data were transformed to a three-state categorical variable by grouping 

species with three or more types of preferred habitat into a single category. 

 Forest Edge.  As with habitat breadth, empirical studies have shown that birds inhabiting 

forest edge are less sensitive to habitat disturbance and more prone to crossing habitat gaps and 

open areas than are species restricted to interior forest (Belisle et al. 2001; Sekercioglu et al. 2002).  

I therefore included the use of edge habitat as a binary variable. 
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 Foraging Stratum.  The vertical edges of the forest are often equated to the horizontal 

surfaces of the canopy (Pearson 1971; Levey and Stiles 1992; Cohn-Haft and Sherry 1994; Walther 

2002a).  Studies suggest canopy species of the open, more exposed treetops show less inhibition 

crossing gaps in habitat than understory species (reviewed in Harris and Reed 2002). Capparella 

(1991) observed that canopy birds, similar to várzea species, lacked phenotypic differences across 

the Amazon River and suggested this was due to cross-river dispersal.  In contrast, Hayes and 

Sewlal (2004) used raw taxonomic boundaries to examine the efficacy of the Amazon River as an 

isolating barrier and found no significant difference between understory and canopy forest birds.  

However, current taxonomy is based primarily on morphology and may not adequately reflect 

patterns of genetic differentiation that may be incongruent with bird plumage (Capparella 1991; 

Seutin et al. 1993; Joseph et al. 2001; Marks et al. 2002).  I therefore included the forest stratum at 

which species typically forage as a variable.  Species were classified as either canopy or understory 

according to the following guidelines: (i) understory – terrestrial, understory, and 

understory/midstory; and (ii) canopy – canopy and midstory/canopy. 

 Diet.  The propensity for dispersal may be linked to mobility requirements associated with 

spatial and temporal changes in food availability.  In birds, frugivores may travel long distances and 

consequently show marked fluctuation in seasonal abundance in response to changes in fruit 

availability (Blake and Loiselle 1991; Moegenburg and Levey 2003; Haugaasen and Peres 2007).  

In contrast, insectivores exhibit relatively little seasonal variation in abundance (Karr 1976; 

Greenberg and Gradwohl 1986) and, thus, are considered more sedentary than frugivores (Levey 

and Stiles 1992).  I classified each species as belonging to one of three diet categories (frugivore, 

insectivore, and omnivore) based on natural history literature. 
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 Relative Abundance.  The effective size of populations (Ne), both ancestral and present, 

affects the timing of gene divergences that precede the actual separation of diverging populations 

(Edwards and Beerli 2000).  I used the relative abundance for a species, described by Stotz et al. 

(1996), as a proxy for Ne, assuming total population sizes have remained constant through time.   

Although not a consistent approximation of long-term effective population size, a species’ relative 

abundance can highlight its susceptibility to local extinction and other demographic fluctuations 

that affect patterns of genetic variation, and hence, estimates of effective population size in both 

divided and undivided populations (Whitlock and Barton 1997).  Here, the timing of cyt b 

divergence (deep versus shallow) is predicted to have a positive association with relative 

abundance.  Species were grouped into three categories of relative abundance: common, fairly 

common; and uncommon/rare. 

 Geographic Distance. Although the sampling across species was largely congruent spatially, 

geographic distance was included in models to test for isolation by distance effects (Wright 1943).  

For each species, the Euclidean distance between the individual sampling localities was calculated 

using the program ARCGIS (http://www.esri.com).  The average intraspecific geographic distance 

was measured across all three physical barriers of interest. 

 General linear models (GLMs) were used to assess whether species-specific attributes had 

statistical associations with across-species levels of genetic differentiation.  The average genetic 

distances for species, across all three barriers, were positively skewed and therefore square-root 

transformed before analysis.  For the across-Amazon River dataset, an additional transformation 

(square-root) was required to achieve normality.  All variables (Table 2.1) were considered fixed 

effects.  Each variable was first tested for a one-way association with the across-species genetic 

divergence values.  Variables showing P < 0.15 were then reanalyzed in multi-predictor models to  
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Table 2.1 List of variables. 
Variable Type Values 
Maximum elevation Continuous (meters) 
Várzea Categorical Yes, No 
Habitat breadth Categorical One, Two, Three or more 
Forest edge Categorical Yes, No 
Foraging stratum Categorical Understory, Canopy 
Diet Categorical Frugivore, Insectivore, Omnivore 
Relative abundance Categorical Common, Fairly common, Uncommon 
Geographic distance Continuous (kilometers) 
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Table 2.2 Best-fit model including parameters for all 40 taxa. 

Species Model Base Frequenciesa TI/TV 
Ratio Rate Matrixb Shape Pinv 

Crypturellus soui HKY+I 0.2653, 0.3222, 0.1225 5.2056 equal - 0.7804 
Patagioenas subvinacea HKY 0.2641, 0.3523, 0.1317 5.2 x 1036 equal - - 
Geotrygon saphirina HKY 0.2734, 0.3553, 0.1211 11.7518 equal - - 
Pyrrhura melanura F81 0.2743, 0.3581, 0.1295 - equal - - 
Pionus menstruus HKY 0.2746, 0.3681, 0.1259 5.0 x 1036 equal - - 
Amazona farinosa HKY 0.2692, 0.3491, 0.1386 2.1653 equal - - 
Piaya cayana HKY 0.2883, 0.3340, 0.1273 3.8557 equal - - 
Trogon collaris HKY 0.2922, 0.3247, 0.1206 4.306 equal - - 
Trogon rufus HKY+I 0.2772, 0.3417, 0.1218 18.7553 equal - 0.8188 

Baryphthengus martii TrN+G 0.2611, 0.3523, 0.1309 - 1.0, 20.4, 1.0, 1.0, 
9.6 0.1699 - 

Automolus ochrolaemus HKY+I 0.2835, 0.3127, 0.1243 10.8676 equal - 0.8168 
Automolus rubiginosus HKY 0.2859, 0.3016, 0.1274 8.7134 equal - - 
Sclerurus mexicanus HKY+I 0.2884, 0.3204, 0.1238 12.1958 equal - 0.7791 

Xenops minutus TrN+G 0.2939, 0.2949, 0.1185 - 1.0, 9.7, 1.0, 1.0, 
27.6 0.0904 - 

Dendrocincla fuliginosa K81uf 0.2940, 0.3022, 0.1327 - 
1.0, 1.4 x 1012, 1.4 
x 1011, 1.4 x 1011, 

1.4 x 1011 
- - 

Glyphorynchus spirurus HKY+G 0.2991, 0.3165, 0.1227 8.6512 gamma 0.1557 - 
Cymbilaimus lineatus HKY 0.2810, 0.3074, 0.1273 36.2921 equal - 0 
Taraba major HKY+I 0.2793, 0.3211, 0.1260 19.6957 equal - 0.8097 
Myrmotherula ignota HKY 0.2832, 0.3381, 0.1264 6.5555 equal - - 
Myrmotherula axillaris HKY 0.2783, 0.3273, 0.1244 4.8574 equal - - 
Colonia colonus HKY 0.2728, 0.3237, 0.1230 11.7141 equal - - 
Attila spadiceus HKY 0.2769, 0.3166, 0.1208 3.2351 equal - - 
Querula purpurata HKY 0.2703, 0.3283, 0.1257 5.2 x 1036 equal - - 
Lepidothrix coronata HKY+I 0.2703, 0.2998, 0.1255 11.5216 equal - 0.7886 
Tityra inquisitor HKY 0.2848, 0.3080, 0.1220 13.826 equal - - 
Tityra semifasciata HKY 0.2859, 0.2977, 0.1177 5.1 x 1036 equal - - 
Schiffornis turdina HKY 0.2589, 0.3180, 0.1329 14.2881 equal - 0 
Hylophilus ochraceiceps HKY+I 0.3269, 0.3374, 0.1225 6.8565 equal - 0.8232 
Microcerculus marginatus HKY+I 0.2833, 0.3487, 0.1368 8.2575 equal - 0.8325 
Henicorhina leucosticta HKY+I 0.2736, 0.3575, 0.1306 25.48 equal - 0.8642 
Microbates cinereiventris HKY+I 0.2829, 0.3427, 0.1380 3.2938 equal - 0.808 
Tangara gyrola HKY+I 0.2726, 0.3538, 0.1385 11.5431 equal - 0.8918 
Tangara cyanicollis HKY 0.2638, 0.3467, 0.1414 6.0816 equal - 0 
Tersina viridis HKY 0.2670, 0.3593, 0.1344 5.1 x 1036 equal - 0 

Cyanerpes caeruleus TrN 0.2591, 0.3693, 0.1355 - 1.0, 105.5, 1.0, 1.0, 
36.3 - 0 

Chlorophanes spiza HKY 0.2649, 0.3611, 0.1334 7.5192 equal - 0 
Arremon aurantiirostris HKY+I 0.2608, 0.3699, 0.1272 8.0129 equal - 0.818 
Saltator grossus HKY+I 0.2727, 0.3362, 0.1375 5.0947 equal - 0.821 
Phaethlypis fulvicauda HKY+I 0.2769, 0.3456, 0.1308 9.3691 equal - 0.8381 
Psarocolius angustifrons HKY 0.2630, 0.3372, 0.1406 9.3881 equal - 0 
Note:  For each taxa, a neighbor-joining tree was estimated using PAUP*v4.0b10 (Swofford 1998) and likelihood scores 
calculated for a series of nested substitution models.  The best-fit model was determined by the Bayesian Information 
Criterion (BIC) implemented in ModelTest 3.8 (Posada and Crandall 1998). 
a Order of base frequencies is A, C, G, T. 
b Order of rate matrix is A to C, A to G, A to T, C to G, C to T, and G to T. 
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test for second-order interactions.  All analyses were computed with JMP statistical package, 

version 5.0.1.2 (SAS Institute Inc., 2003). 

Analyses of Genetic Variation between and within cis-Andean Populations 

 For 16 species (Table 2.5) with adequate sampling across cis-Andean regions (Figure 2.1), I 

assessed the spatial clustering of variation at cyt b for populations separated by the Amazon and 

Madeira rivers by partitioning genetic variation within and among populations using analysis of 

molecular variance (AMOVA; Excoffier et al. 1992) in ARLEQUIN v. 3.1.  This program was used 

to calculate the percentage of variation within and among the three cis-Andean populations.   

 I also examined levels of within-population variation and tested for historical demographic 

expansion in the cis-Andean population located south of the Amazon River and west of the Madeira 

River (Inambari area of endemism, see Cracraft 1985).  Phylogeographic breaks are known to occur 

within this region (Marks et al. 2002; Cheviron et al. 2005b) and, if present, could confound 

analyses of within-population genetic variation.  Therefore, I first assessed population genetic 

structure through maximum likelihood (ML) phylogenetic analyses (heuristic search using HKY85 

model, TBR branching-swapping, and support for nodes assessed with 100 bootstrap iterations) 

using PAUP* 4.0b10 (Swofford 2001) to identify major haplotype clades within Inambari.  For 

species exhibiting structure within the region, I included in subsequent analyses only the 

phylogroup with the largest sample size.  Levels of nucleotide diversity (π; Nei 1987) were 

calculated within Inambari using DNASP v. 4.50.2 (Rozas et al. 2003).  Historical demographic 

expansion was inferred by the raggedness index (Harpending 1994), Fu’s Fs (Fu 1997), and R2 

(Ramos-Onsins and Rozas 2002) using DNASP.      
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Tests of Rate Heterogeneity 

 Rates of molecular evolution can differ among phylogenetic groups (Wu and Li 1985; 

Britten 1986; Li and Wu 1987; Gillooly et al. 2005; Pereira and Baker 2006b; Pereira and Baker 

2006a).  Although rate heterogeneity across taxa is believed to be more prevalent with increasing 

phylogenetic scale, there remains considerable debate surrounding the consistency of molecular 

clocks, even within closely related taxonomic groups (Martin 1995; Bromham et al. 1996; Nunn 

and Stanley 1998; Witt 2004).  Concerning cross-barrier divergences, species with more rapid rates 

of molecular evolution would have deeper divergences relative to species with coincidental patterns 

of geographic isolation but slower rates.  

 I first examined the degree to which variation in cross-Andean divergences are related to 

phylogenetic history.  In the case of rate heterogeneity across lineages, I would expect across-

species patterns of genetic divergence to exhibit a phylogenetic signal.  My phylogenetic tree of the 

40 study species was based primarily on the DNA-DNA hybridization-based tree of Sibley and 

Ahlquist (1990) and the recently published phylogeny by Hackett et al. (2008).  Combined, these 

studies accommodated the taxonomic breadth of my sampling design by providing higher order 

relationships among families as well as branch lengths.  Given concerns over methodology, 

particularly with DNA-DNA hybridization (Houde 1987; Harshman 1994; Barker et al. 2004), 

published family-level phylogenies were used to improve inferences among lower phylogroups 

whenever possible (Figure 2.2).   

 To assess phylogenetic signal regarding rate heterogeneity, I used a generalized least squares 

(GLS) analysis to test whether estimates of genetic divergence across the comparative data set 

exhibited phylogenetic dependence (Pagel 1999; Freckleton et al. 2002).  A single multiplier, λ, is 

adjusted to measure the degree by which traits (levels of genetic divergence) vary/co-vary across  
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Figure 2.2 Phylogeny of 40 study species based primarily on phylogenetic inferences using 
DNA-DNA hybridization by Sibley and Ahlquist (1990) and DNA sequence data from Hackett 
et al. (2008).  Where possible, additional phylogenies were incorporated to improve the inferred 
historical relationships within lower-level phylogenetic groupings. 
a Burns, K. J. 1997. Molecular systematics of tanagers (Thraupinae): Evolution and biogeography of a diverse radiation of neotropical birds. 
Molecular Phylogenetics and Evolution 8:334-348;  Burns, K. J., and K. Naoki. 2004. Molecular phylogenetics and biogeography of Neotropical 
tanagers in the genus Tangara. Molecular Phylogenetics and Evolution 32:838-854. 
b Chesser, R. T. 2004. Molecular systematics of New World suboscine birds. Molecular Phylogenetics and Evolution 32:11-24;  Brumfield 
unpublished. 
c Brumfield unpublished. 
d Ericson, P. G. P., D. Zuccon, J. I. Ohlson, U. S. Johansson, H. Alvarenga, and R. O. Prum. 2006. Higher-level phylogeny and morphological 
evolution of tyrant flycatchers, cotingas, manakins, and their allies (Aves: Tyrannida). Molecular Phylogenetics and Evolution 40:471-483; Tello, 
J. G., and J. M. Bates. 2007. Molecular phylogenetics of the tody-tyrant and flatbill assemblage of tyrant flycatchers (Tyrannidae). Auk 124:134-
154.. 
e Tavares, E. S., A. J. Baker, S. L. Pereira, and C. Y. Miyaki. 2006. Phylogenetic relationships and historical biogeography of Neotropical parrots 
(Psittaciformes: Psittacidae: Arini) inferred from mitochondrial and nuclear DNA sequences. Systematic Biology 55:454-470. 
f de los Monteros, A. E. 1998. Phylogenetic relationships among the trogons. Auk 115:937-954. 
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the phylogenetic tree assuming a “Brownian motion” model of evolution.  A value of λ = 1  

indicates traits are evolving across the tree in line with a Brownian process and that phylogeny must 

be accounted for in further comparative analyses.  Conversely, λ = 0 suggests the given traits 

exhibit no phylogenetic dependence.  A likelihood ratio test was performed to test for significant 

departure of the likelihood score obtained using an estimated λ and scores given a restricted model 

where λ was set to 0 (phylogenetic independence) and 1 (phylogenetic dependence). 

 Rate heterogeneity across lineages, particularly for mitochondrial markers, has also been 

associated with metabolic rate (Martin and Palumbi 1993).  In birds, Nunn and Stanley (1998) 

revealed a negative relationship between body size, used as a proxy for metabolism, and rates of 

substitution in cyt b.  However, Witt (2004) found no evidence linking metabolism and rates of 

molecular evolution in a large-scale comparative analysis of Neotropical birds.  Recently, Weir and 

Schluter (2008) also examined cyt b and found the variance in rates across lineages was not 

explained by differences in body size.  Because results remain equivocal, I tested for potential 

associations in my data by regressing cross-Andean genetic divergence (square-root transformed) 

with body mass (log-transformed).  For each species, bird mass was calculated using specimens 

from the Louisiana State University Museum of Natural Science (Appendix A). 

RESULTS 
 

 I present results using the HKY85 genetic distance. This model was selected most frequently 

(20 of 40 species) as the best-fit model, and the results showed the same patterns of statistical 

significance regardless of distance measure (p-distance, HKY85 model, or best-fit model; Table 

2.4).  Cross-barrier genetic distances across species varied from 0.0 to 0.104 (Andes: n = 40, x̄ = 

.035, SD = .024, min = .001, max = .084; Amazon: n = 29, x̄ = .018, SD = .020; Madeira: n = 26, x̄ 

= .021, SD = .025).  Phylogenetic analyses revealed no evidence of phylogenetic dependence  
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Table 2.3 Analysis of phylogenetic dependence of variation in across-species levels of genetic 
differentiation (untransformed) between populations separated by the Andes. 
 λ ln L ln L (λ = 0) ln L (λ = 1) 
Uncorrected 0.621 97.02 96.01 94.29 *  
Hasegawa-Kishino-Yano (HKY) model 0.621 94.00 93.00 91.17 * 
Best-fit model determined by ModelTest 3.8  0.000 59.60 59.60 54.87 * 
     Note:  The parameter, λ, is defined as a maximum-likelihood estimate of the degree of correlation between a given phylogenetic inference 
and associate trait information mapped onto the tree.  The maximum-likelihood estimate of λ is provided along with its log-likelihood score 
(ln L).  Log-likelihood scores for λ set to both 0 (phylogenetic independence) and 1 (phylogenetic dependence) are shown.   
     * Estimated value of λ differs significantly (P < .05) from constrained model (λ set to 0 or 1) using log-likelihood ratio test.  
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regarding variation in across-species levels of genetic differentiation (Table 2.3).  In 

addition, there was no significant relationship between genetic divergence and log-transformed 

mass (F = 2.684; df = 1,38, r2 = .066, P  = .110).  

 I found that canopy species had significantly lower levels of cross-barrier genetic divergence 

than did understory species (Table 2.4, Figure 2.3).  Habitat breadth and diet, both correlated with 

foraging stratum, were also marginally significant.  Species having a greater number of preferred 

habitats (habitat generalists) were associated with the canopy (Pearson X2 = 10.837, P = .004), and 

frugivores were largely composed of canopy species (Pearson X2 = 6.234, P = .044).  When 

controlling for multiple tests using Bonferroni correction, both habitat breadth and diet showed no 

significant relationship with levels of genetic divergence.  Within insectivores (canopy = 5 species, 

understory = 14 species), foraging stratum was significantly associated with cross-Andean gene 

divergences (F = 9.402; df = 1,17, r2 = .356, P = .007) suggesting that the disproportionate number 

of canopy frugivores did not drive the significant association between foraging stratum and genetic 

differentiation.  Similarly, for species restricted to terra firma lowland tropical rainforest (canopy = 

4 species, understory = 7 species), foraging stratum showed a strongly significant relationship with 

cross-Andean genetic distance (F = 29.413; df = 1,9, r2 = .766, P = .0004), again suggesting 

foraging stratum alone is a strong predictor of cross-barrier levels of genetic differentiation.  

Because habitat breadth and diet were both correlated with foraging stratum, I did not include multi-

predictor models to test for second-order interactions. 

 An AMOVA of cis-Andean populations, as defined by samples collected from opposite 

banks of the Amazon and Madeira rivers, showed marked variation in levels of genetic structure 

across species (Table 2.5).  The percentage of overall genetic variation partitioned among 

populations, relative to within, was significantly higher in understory species compared to those of
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Table 2.4 Results of One-way ANOVA (p-distance, HKY-corrected, and Best-fit Model) 
  Andes Amazon River Madeira River 

 n = 40 29 26 
Maximum elevation, m p-distance 0.0182 1.2208 0.4648 
 HKY 0.0224 1.2215 0.4915 
 Best-fit Modela 0.5172 1.2847 0.2185b 
Várzae p-distance 3.0764 4.0585 0.4017 
 HKY 3.0604 4.0450 0.4348 
 Best-fit Modela 2.3884 3.7270 0.1646 
Habitat breadth p-distance 5.2055 * 4.2889 * 1.9714 
 HKY 5.2272 * 4.2545 * 1.9673 
 Best-fit Modela 5.8995 ** 4.1529 * 1.0836b 
Forest edge p-distance 0.8006 0.1197 0.1962 
 HKY 0.8139 0.1165 0.1981 
 Best-fit Modela 1.1904 0.0556 0.6260b 

Foraging strata p-distance 37.2539 *** 
(0.49) 

19.2183 *** 
(0.42) 

28.8257 *** 
(0.55) 

 HKY 36.3548 *** 
(0.49) 

19.1894 *** 
(0.42) 

28.4850 *** 
(0.54) 

 Best-fit Modela 30.9882 *** 
(0.45) 

18.4715 *** 
(0.41) 

28.6374 *** 
(0.55)b 

Feeding guild p-distance 2.8551 3.3758 * 3.8886 * 
 HKY 2.8697 3.3785 * 3.8381 * 
 Best-fit Modela 2.9410 3.5011 * 3.0906b 
Relative abundance p-distance 2.5248 0.1476 0.0571 
 HKY 2.6042 0.1378 0.0567 
 Best-fit Modela 1.8297 0.0625 0.0834b 
Geographic distance, km p-distance 1.7237 0.7460 0.1304 
 HKY 1.7289 0.7792 0.1479 
 Best-fit Modela 2.5109 1.0846 0.1340b 
a Best-fit model determined using the AIC test implemented in ModelTest 3.8 (Posada and Crandall 1998).  See 
Table 2.2 for selected model for each taxa. 
b outlier removed (Hylophilus ochraceiceps) 
* Values with non-adjusted P < .05 
** Bonferroni correction within a group (0.05/8, P < .0062) 
*** Bonferroni correction across all tests (0.05/24, P < .0021)  
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Figure 2.3 Box plot of the relationship of genetic distance (HKY85-corrected, square-root 
transformed) with foraging stratum across the A) Andes Mountains; B) Amazon River; and C) 
Madeira River.  Dashed lines in each box plot indicate the group mean and the broad gray lines 
within each panel highlight the grand mean.  Diagonal lines connect means between canopy and 
understory.  Solid horizontal lines within boxes identify the median sample value and box ends are 
the 25th and 75th quartiles.  Whiskers denote the outermost data point falling within the upper 
and lower quartile distances. 
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Table 2.5 Hierarchical analysis of molecular variance (AMOVA) for cis-Andean population 
centers and results of polymorphism and historical demographic analyses for Inambari. 
 AMOVA (all areas) Polymorphism & demographics within Inambari 
 

Sample Sizea 
Tests of pop. 
expansiong 

Species N I R 

% 
Variation 
Among 
Areasb 

Nuc. 
div., 
 πc 

(× 10-3) 

Avg. 
dist. 

(km)d 

No. 
inds.
/100 
hae 

Female 
Census 
Sizef  

(× 106) r 
Fu’s 
Fs 

R2 

Understory:            
 Baryphthengus martii 2 4 (3) 1 75.5 6.4 700 6 2.12 - - - 
 Automolus ochrolaemus 5 15 10 89.6 2.9 658 5 3.53 - * * 
 Sclerurus mexicanus 2 5 (4) 1 32.3 6.4 733 3 1.06 - - - 
 Xenops minutus 8 10 10 86.2 6.6 635 12 8.48 - - - 
 Dendrocincla fuliginosa 1 8 (6) 2 37.7 4.2 215 8 2.83 - * * 
 Glyphorynchus spirurus 5 5 (3) 1 40.7 7.6 267 5 1.77 - - - 
 Myrmotherula axillaris 5 3 4 67.4 4.5 144 32 22.6 - - - 
 Hylophilus ochraceiceps 7 5 2 85.9 5.4 785 15 10.6 - - - 
 Microcerculus marginatus 7 6 6 95.1 3.1 748 4 2.83 - - - 
Canopy:            
 Attila spadiceus 3 9 5 0.5 1.3 696 8 5.65 * * * 
 Querula purpurata 4 10 - 6.0 0.9 442 10 7.07 - - - 
 Tityra semifasciata 1 6 4 6.4 1.2 663 8 5.65 - * * 
 Tangara gyrola 4 10 4 53.2 3.8 634 6 4.24 - * - 
 Tersina viridis 2 6 5 15.4 2.4 655 6 4.24 - - - 
 Chlorophanes spiza 4 8 3 24.2 1.8 566 6 4.24 - * * 
 Saltator grossus 1 5 (3) 2 6.6 3.1 706 2 0.71 - - - 
     Note:  For species with adequate sampling east of the Andes, overall genetic variation was apportioned into variation both within and among 
the three cis-Andean areas of endemism studied.  For Inambari, the area with the most intensive sampling, levels of within-population 
polymorphism were estimated after accounting for within-Inambari structure.  To assess whether levels of polymorphism are related to sampling 
effects and/or present-day demography, assessments of within-Inambari polymorphism were compared to the average distance between sampling 
localities and estimates of current population size of females.   
a Number of individuals sampled for the three cis-Andean areas of endemism studied:  Napo (“N”), Inambari (“I”), and Rondonia (“R”).  Since 
known phylogeographic breaks occur within Inambari, phylogenetic analyses were used to identify major clades.  For species exhibiting structure 
within Inambari, the clade most sampled was used in subsequent within-Inambari analyses.  Adjusted sample sizes are shown in parentheses in 
column “I”, see Supplementary Materials (S#) for details. 
b Percentage of overall cis-Andean variation apportioned to variation among the three areas of endemism (equal to 100 minus % Variationwithin). 
c Nucleotide diversity (π) within Inambari. 
d Average pairwise geographical distance (km) across sampling localities within Inambari. 
e Number of individuals per 100 hectares based on Terborgh et al. (1990). 
f Estimate of census size of females based on total area of Inambari (1.4 × 108 hectares). 
g Asterisks (*) represent significant results (P < 0.05) for tests of historical demographic expansion.  Raggedness (r) is a measure of the 
smoothness of the mismatch distribution with low values of r characteristic of rapid demographic expansion.  Low R2 values and large negative 
Fs values are also associated with demographic expansion.  P (r), P (R2), and P (Fs) describe the one-tailed probability that the observed estimate 
is lower than expected given a distribution of scores generated via 1000 coalescent simulations assuming a constant population size and 
incorporating an estimate of the current population genetic variation (θ).         
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the canopy (F = 21.658; df = 1,14, r2 = .607, P = .0004).  In addition, nucleotide diversity (π) in 

understory species was high relative to canopy birds (F = 19.116; df = 1,14, r2 = .578, P = .0006).  

There was no significant relationship between π and the mean geographic distance between 

sampling localities (F = .283; df = 1,14, r2 = .020, P = .603), nor with species’ estimates of census 

size (F = .164; df = 1,14, r2 = .012, P = .691).  Significance of raggedness values, Fu’s Fs, and R2 

varied across species (Table 2.5).  Four canopy and two understory species exhibited evidence of 

historical demographic expansion.  There was no predominance of expansion with either stratum 

(Pearson X2 = 2.049, P = .152), although this could be due in part to too little statistical power. 

DISCUSSION 

 My results revealed that ecological differences among species explain much of the 

interspecific variance in population genetic differentiation across three biogeographic barriers in 

South America.  These findings are conservative given the underlying uncertainty inherent in 

single-locus estimates of population divergence.  I suggest that habitat-mediated differences in 

dispersal propensity between canopy and understory species of lowland rainforest birds have 

affected historical patterns of gene flow and/or effective population sizes to generate the 

interspecific variance in across-barrier divergences. 

Linking Ecological Pattern to Evolutionary Process 

 Vertical stratification in Neotropical lowland rainforests has long been studied (Allee 1926a; 

Allee 1926b).  Differences in community structure in birds (Orians 1969; Pearson 1971; Smith 

1973; Terborgh 1980b; Greenberg 1981; Stiles 1983; Cohn-Haft and Sherry 1994; Winkler and 

Preleuthner 2001; Walther 2002a; Walther 2002b) and other organisms (bats:  Bernard 2001; small 

mammals: Vieira and Monteiro 2003; leaf-beetles: Charles and Bassett 2005; bees: Martins and de 

Souza 2005; termites: Roisin et al. 2006) are driven by marked contrasts in forest structure, lighting, 
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and microclimate observed across strata (Allee 1926b; Longman and Jenik 1974; Richards 1996; 

Madigosky 2004).  The structure of the canopy is complex, with most trees reaching heights of 30 

and 45 m, and emergent species towering to 65 m (Munn 1985; Terborgh et al. 1990; Daly and 

Mitchell 2000; Naka 2004).  This produces a two-dimensional surface with large vertical 

discontinuities and horizontal gaps created by tree fall.  Due to direct illumination and the 

unevenness of its surface, the canopy receives greater amounts of light and experiences more 

variation in light intensity than the shaded lower strata (Endler 1993; Walther 2002b).  Given this 

energy regime and exposure to weather, the canopy undergoes greater daily, seasonal, and annual 

variation in temperature and humidity compared to the forest interior (Allee 1926b; Smith 1973; 

Madigosky 2004).  In contrast, the forest understory is fairly uniform in height and degree of 

openness.  Here, tree species are smaller crowned and more closely spaced (Pearson 1971; Terborgh 

et al. 1990; Richards 1996; Walther 2002a). 

 How the dichotomy between forest canopy and understory influences ecology in birds has 

been well studied, but much less so the evolutionary consequences imposed by differing strata.  The 

main result of this study was that foraging stratum is a strong predictor of genetic differentiation 

across multiple, relatively strong, physical barriers in species of lowland tropical rainforest birds.  

Given that a species’ dispersal propensity is the key determinant of the efficacy of a physical 

barrier, I conclude that canopy species exhibit lower levels of cross-barrier divergence because 

these birds have higher dispersal propensity compared to understory species. 

 Unfortunately, despite being a key dynamic within population biology and determinant of 

population genetic structure (Slatkin 1987), dispersal remains poorly understood in birds and direct 

estimates are limited to a handful of taxa (Paradis et al. 1998; Clobert et al. 2001; Winkler et al. 

2005).  Instead, researchers use indirect assessments to infer patterns of dispersal in birds.  For 
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example, a suite of traits, including morphological attributes that govern mobility and behavioral 

restrictions on movement, are incorporated to define the tendency and ability of a species to 

disperse across a given landscape.  Based on this approach, studies of canopy and understory 

species of Neotropical birds support the link between dispersal and across-species patterns of 

genetic differentiation.   

 First, canopy birds are considered more proficient dispersers because these species tend to 

forage widely across multiple habitat types compared to understory species.  In Costa Rica, Stiles 

(1980) documented that 70-95 % of canopy birds in tropical wet and dry forest regularly foraged 

from top-to-bottom along the vertical face of forest edge.  The general rule is that canopy species 

occur in places outside primary forest where two-dimensional surfaces and lighting conditions 

resemble the canopy exterior.  Many canopy species venture downward along treefall gaps and 

across more open habitat (Orians 1969; Terborgh and Weske 1969; Pearson 1971; Stiles 1980; 

Terborgh 1980b; Greenberg 1981; Walther 2002a).  In contrast, understory birds tend to be 

confined to particular microhabitats within the shaded forest interior and are rarely observed outside 

continuous forest (Orians 1969; Remsen and Parker 1984; Terborgh et al. 1990; Cohn-Haft and 

Sherry 1994; Walther 2002a).  In addition, canopy birds are less sensitive to disturbance than 

understory species (Karr 1982; Bierregaard and Lovejoy 1988; Stouffer and Bierregaard 1995; 

Harris and Reed 2002; Sekercioglu et al. 2002; Laurance 2004; Laurance et al. 2004; Laurance and 

Gomez 2005), again suggesting that canopy species are less sedentary. 

 Second, greater dispersal propensity in canopy birds is linked to spatial and temporal 

patterns of resource availability, considered more heterogeneous in the forest exterior compared to 

the understory (Fogden 1972; Frankie et al. 1974; Terborgh 1980b; Greenberg 1981; Terborgh 

1986; Loiselle 1988; Levey and Stiles 1994).  Large-sized crowns of the canopy, in conjunction 
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with tree fall gaps, separate trees that provide similar resources (i.e. soft fruit, mast, nectar, insects) 

by distances of tens to hundreds of meters (Terborgh et al. 1990).  In contrast, the smaller and more 

closely spaced crowns of understory trees promote higher densities of a given resource with less 

traveling distance between similar food types.  Studies have found that canopy birds occupy larger-

sized territories compared to understory species, potentially a consequence of differing spatial 

arrangements of trees across strata (Munn 1985; Terborgh et al. 1990).  Temporally, fruit in the 

canopy is more seasonal.  Canopy stocks tend to be larger-sized, produced in larger crops, and 

persist for shorter periods of time than understory fruit which is typically available year round (Karr 

1976; Denslow et al. 1986; Fleming et al. 1987; Schaefer and Schmidt 2002).  Prey base, 

particularly that found in the exposed canopy, is likely affected by environmental fluctuations at 

both seasonal and daily time scales.  Unlike the understory, canopy trees tend to suffer substantial 

leaf loss during seasonal dry periods (Croat 1978; Leigh and Smythe 1979) that can greatly 

influence prey abundance (Wolda 1978).  Even daily fluctuations affect foraging patterns and cause 

canopy birds to move more relative to understory species.  During midday, canopy birds relocate to 

lower shaded portions of the forest to escape high temperatures (Pearson 1971; Pearson 1977; 

Walther 2002b).  Differences in resource predictability across forest strata is associated with dietary 

specialization in that canopy birds exhibit less preference than do understory species (Pearson 1975; 

Sherry 1984; Rosenberg 1990; Cohn-Haft and Sherry 1994).  In lowland tropical rainforests of 

Peru, Terborgh (1980b) found bird species with mixed diets were largely in the canopy, whereas 

species foraging below 10 m were all dietary specialists.  

 Additional observations suggest canopy birds have a tendency for long distance movement.  

Several canopy species respond to resource availability that is more irregular in both space and time 

by foraging over long distances (parrots and toucans: Karr and James 1975; Moegenburg and Levey 
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2003).  In addition, canopy species tend to fluctuate in local and seasonal abundance (Stiles 1980; 

Greenberg 1981; Loiselle 1988).  This suggests that canopy birds move readily across the 

landscape, at both small and large spatial scales, in response to temporal changes in habitat, a 

characteristic that may translate to a predisposition for migration (Levey and Stiles 1992).  In 

contrast, understory species of lowland rainforest birds have experimentally been shown to have 

dramatic limitations in flight capabilities across gaps in habitat of extremely short distances, less 

than 100 m in many cases (Moore et al. 2008).  Importantly, this study revealed that variance in 

flight performance across gaps correlated strongly with patterns of extinction and distribution across 

a Panamanian lacustrine archipelago.  

Dispersal Propensity and Genetic Divergence 

 In a two-population isolation model, patterns of gene divergence are determined by 

historical patterns of gene flow between diverging populations and the effective population sizes of 

both ancestral and daughter populations (Arbogast et al. 2002).  The dispersal propensity of a 

species can influence each of these variables with similar effects on the gene genealogies of 

diverging populations.  In terms of historical gene flow, differences in species-specific attributes 

regarding dispersal may affect the relative efficacy of an arising barrier to gene flow and thus the 

timing of population separation among co-distributed taxa.  In a scenario represented by staggered 

vicariance, birds with high dispersal propensity may have experienced more recent across-barrier 

gene flow compared to sedentary species.   

 The dispersal propensity of a species affects the geographic structuring of genetic variation, 

and consequently, the effective population size.  Subdivision, via restricted migration between 

demes, increases the effective size of a population (Wright 1943; Wright 1951) and, consequently, 

the depth of gene genealogies within a metapopulation (Wakeley and Aliacar 2001).  Subdivision 
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can lead to overestimates of the inferred timing of divergence between two isolated populations and 

its effects can be substantial compared to cases of relative panmixia within the ancestral population 

(Wakeley 2000).  Across cis-Andean populations, understory species of lowland rainforest birds 

exhibited greater levels of population subdivision relative to canopy birds, suggesting species found 

in the lower strata are more sedentary (Templeton 2006).    The pronounced structure within 

understory birds likely translates to greater effective population sizes, which is also suggested by 

the higher levels of genetic diversity in understory birds compared to canopy species within 

southwestern Amazonia.  Unlike the scenario involving staggered isolation, interspecific variance in 

across-barrier divergences may reflect simultaneous vicariance among co-distributed taxa with the 

temporal variation in gene coalescences a reflection of differences in effective sizes of the ancestral 

population and its dependence on the migration rate among demes. 

 Hackett and Lehn (1997) described another scenario involving simultaneous vicariance 

among co-distributed taxa that results in spatial concordance but considerable temporal 

heterogeneity across phylogeographic records.  The “initial genetic conditions” hypothesis posits 

that ancestral populations with considerable gene flow and little differentiation among demes will 

have contrastingly shallow divergences post-isolation compared to taxa characterized by low gene 

flow among demes.  This hypothesis suggests that sedentary species have greater genetic 

differentiation due to effects of isolation by distance and, when strong barriers to gene flow arise, 

this previously structured genetic variation is responsible for the interspecific variance in genetic 

divergences among co-distributed taxa with varying dispersal propensities.  The “initial genetic 

conditions” hypothesis seems particularly appropriate for physical barriers to gene flow, such as a 

mountain range, that form gradually over time.     
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 Low nucleotide diversity is also indicative of younger populations.  Several species, both 

understory and canopy birds, showed evidence of historical demographic expansion.  Because 

levels of nucleotide diversity are not associated with across-species patterns of expansion, it is 

unclear how lineage age explains low levels of nucleotide diversity within canopy species.  It seems 

implausible that expansion alone is causal in all canopy species.  In addition, source populations are 

not readily identifiable since patterns observed in western Amazonia are repeated in trans-Andean 

populations (C. W. Burney, data unpublished).  Undoubtedly, species’ demographic histories within 

western Amazonia are complex, as previous phylogeographic studies have revealed (Marks et al. 

2002; Cheviron et al. 2005b).  Increased sampling, both at large and small spatial scales, and 

additional genetic loci are needed to obtain better estimates of divergence parameters and to tease 

apart the microevolutionary processes and conditions that would cause a reduction in both overall 

genetic diversity and structure in some species compared to others.  

 The relationships found in this study add support to previous arguments that low dispersal 

propensity facilitates geographic isolation and divergence (Slatkin 1987; Bohonak 1999; Belliure et 

al. 2000).  Studies using patterns assessed at the family-level in birds have shown the opposite 

trend, linking greater dispersal to higher diversification rates (Owens et al. 1999; Phillimore et al. 

2006).  This conflict is likely the result of differences in the phylogenetic scale at which questions 

regarding ecological correlates of diversity are being addressed.  In my approach, I assessed within-

species patterns of diversification.  Insights gained at the population-level may better address the 

factors, including ecology, pertinent to speciation that could be overlooked in studies examining 

patterns at deeper phylogenetic levels.  To my knowledge this is the first large-scale comparative 

avian study to document a significant association between ecological traits of a species and its level 

of genetic differentiation.  
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CHAPTER 3:  COMPARATIVE MITOCHONDRIAL DNA PHYLOGEOGRAPHY OF 

WIDESPREAD SPECIES OF NEOTROPICAL LOWLAND FOREST BIRDS WITH 
CONTRASTING FORAGING BEHAVIORS 

 
INTRODUCTION 

Understanding how diversity arises is of fundamental importance in evolutionary biology, 

and hinges upon knowledge of the recurrent processes (e.g. gene flow, genetic drift) and historical 

events (e.g. isolation, expansion) driving the genetic and morphological divergence of populations.  

Researchers are increasingly relying on the observed spatial and temporal patterns of genetic 

variation to gain insight into the relative influence of differing microevolutionary forces on 

diversification and the history of populations (Avise et al. 1987a; Avise 2000).  Studies are also 

concentrating on widespread species in order to assess the evolution of geographic variation at 

continental-scales.  In the neotropics, such studies have found 1) shared genetic breaks across the 

northern Andes (Brumfield and Capparella 1996; Zamudio and Greene 1997; Cortes-Ortiz et al. 

2003) with considerable variance in across-taxona levels of cross-Andean divergence, species 

represented by multiple cross-Andean distributions (Nyari 2007; Miller et al. 2008), genetic divides 

across the Amazon River (Armenta et al. 2005) and eastern/western Amazonia (Marks et al. 2002; 

Symula et al. 2003) contrasted by extensive gene flow across the breadth of the Amazon basin 

(Dick et al. 2003; Dick et al. 2004; Eberhard and Bermingham 2004), and complex patterns of 

genetic structure across the Panamanian Isthmus (Brumfield and Braun 2001; Dick et al. 2003; 

Barker 2007; Dacosta and Klicka 2008; Dick and Heuertz 2008).   

While these studies highlight several broad patterns observed in the Neotropics, this region 

has received comparatively little attention in terms of phylogeographic study and much remains 

unexplored (Beheregaray 2008).  Given that Central and South America support the richest 

assemblage of birds in the world (Haffer 1990), research in this species-rich region accounts for less 
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than ten percent of bird publications in the last twenty years of phylogeographic study (Beheregaray 

2008).  Here, I examined the comparative phylogeography of four co-distributed species of tropical 

lowland rainforest birds found throughout Central and South America.  To my knowledge, this 

study represents the first published comparison of range-wide phylogeographic patterns among 

multiple species of widely-distributed neotropical birds. 

Comparative phylogeographic studies traditionally test for shared biogeographic history 

across large spatial scales (Avise 1992; Arbogast and Kenagy 2001).  Another approach is to 

concentrate on phylogeographic inconsistencies among co-distributed taxa since these yield 

information on the relative influence of differing ecological and/or life-history traits on both 

recurrent processes, such as gene flow (Bohonak 1999) and genetic drift (Matocq et al. 2000), as 

well as individual species’ responses to past changes in the landscape (Zink 1996; Bermingham and 

Moritz 1998; Nicolas et al. 2008).  I used this method to test for ecological correlates of genetic 

differentiation in 40 widespread species of lowland tropical rainforest birds co-distributed across 

both sides of the northern Andes mountains (Chapter 2).  I found that genetic variation was 

consistently partitioned into phylogroups east and west of the Andes, yet there was striking 

discordance in levels of cross-Andean divergence among the study taxa.  While much of this 

variance represents stochastic influences associated with coalescing gene lineages, I found a 

significant relationship between habitat use and genetic differentiation in that understory birds have 

deeper cross-Andes divergences and greater population genetic structure than canopy dwellers.  

This corroborates previous ecological assessments that understory birds are generally more 

sedentary than canopy birds (Bierregaard et al. 1992).   

 Here, I investigate how this dichotomy in canopy versus understory patterns of genetic 

variation relates to continent-wide genetic structuring in four species of lowland Neotropical birds.  
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Because each species has a congener that is distributed primarily within Amazonia, a cis-Andean 

origin (cis refers to lowland tropical rainforest east of the Andes) for each genus-level clade is 

suggested (however, see Santos 2007).  In Chapter 2, I found that these four species had widely 

varying levels of genetic divergence across several biogeographic barriers, including the Andes and 

the Amazon River.  Here, I examine in detail the range-wide phylogeographic pattern of two canopy 

species, Attila spadiceus and Tityra semifasciata, which in the previous study showed extremely 

low levels of cross-barrier genetic divergence.  I compare these patterns to two understory species, 

Automolus ochrolaemus and Xenops minutus, which exhibit high levels of genetic divergence across 

these same barriers.  All study taxa are distributed from Mexico south to southern Amazonia (range 

of X. minutus and A. spadiceus extends to Atlantic forest of Brazil) and breed predominately in 

tropical lowland evergreen forest (Stotz et al. 1996). 

 The objectives of this study were to (i) assess the phylogeographic structure of four co-

distributed species of lowland neotropical rainforest birds, (ii) compare range-wide patterns of 

genetic variation in understory versus canopy birds, and (iii) compare the phylogeographic patterns 

of the study species with those of other co-distributed neotropical rainforest taxa.    

METHODS 

Study Species and Taxonomic Sampling 

 I obtained mitochondrial DNA (mtDNA) sequences for NADH dehydrogenase subunit 2 

(ND2; ~1060 base pairs) and cytochrome b (cyt b; ~1029 base pairs) from a total of 341 individuals. 

 Automolus ochrolaemus.  A relatively large foliage-gleaner that is fairly common to 

common throughout its extensive distribution (Ridgely 1994).  Geographic variation in plumage is 

most marked in Central America / Chocó (trans-Andean region) where the darkest and most 

colorful subspecies of the Caribbean lowlands of Mexico, cervinigularis, occur opposite the 
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distinctively pale-colored race, pallidigularis, found in eastern Panama and northwestern South 

America, (Remsen 2003; see Figure 3.1).  Vocal variation is also apparent and seems coincident 

with subspecies boundaries (Remsen 2003).  A. ochrolaemus breeds primarily in tropical lowland 

evergreen forest below 1400 meters (Stotz et al. 1996), but unlike its two most closely related taxa, 

A. infuscatus and Hyloctistes subulatus (Brumfield unpublished), is found in more wet and 

transitional habitat within lowland rainforests.  Trans-Andean populations reside in secondary 

growth and disturbed habitat including coffee plantations whereas Amazonian populations are 

found primarily in várzae, swamp-forest, areas around streams, and tree-fall gaps within terra firme 

(Ridgely and Greenfield 2001; Remsen 2003). A. ochrolaemus forages on arthopods within the 

understory (Ridgely 1994; Stotz et al. 1996; Remsen 2003).  

 I sampled 103 individuals of A. ochrolaemus.  All seven subspecies of A. ochrolaemus were 

represented in this study (Appendix C and Figure 3.7).  I included 40 individuals of Automolus 

infuscatus and 25 individuals of Hyloctistes subulatus for outgroup comparison (not listed).  

 Xenops minutus.  An uncommon to fairly common xenops exhibiting relatively subtle 

changes in both morphology (Figure 3.2) and vocal variation across its wide range, it is comprised 

of ten recognized subspecies (Ridgely 1994; Remsen 2003).  One exception is nominate minutus, 

which is found in southeastern Brazil (Pernambuco to Santa Catarina), eastern Paraguay, and 

northeastern Argentina.  This subspecies is smaller and has more white on its throat and chest 

compared to other subspecies, though vocally it sounds similar to other subspecies (Ridgely 1994; 

Remsen 2003).  X. minutus breeds regularly in both tropical lowland and flooded evergreen forest 

largely below 1000 meters but occasionally to 1500 meters (Ridgely 1994; Stotz et al. 1996).  

Behaviors associated with habitat preference vary across the species’ range.  Populations west of the 

Andes are found in several habitat types (primary forest, mature secondary woodland, and their 
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borders) and are more conspicuous than Amazonian populations which remain primarily within 

terra firma and várzea fores,t venturing infrequently to edge situations (Ridgely and Greenfield 

2001).  X. minutus forages on arthropods usually singly but sometimes in mixed-species flocks, and, 

unlike its congeners, remains predominately in the understory (Ridgely 1994; Remsen 2003). 

 In this study, Xenops was represented by 129 individuals; of these, 121 are X. minutus 

distributed across most of this species’ range and representing nine of the 11 recognized subspecies 

(Appendix D and Figure 3.8).  The subspecies of the Perijá Mountains of Colombia/Venezuela, 

olivaceus, and of northeastern Colombia/northwestern Venezuela, neglectus, were not sampled 

since tissues were unavailable.  X. milleri (2 samples), X. rutilans (4 samples), and X. tenuirostris (1 

sample) were included as outgroup taxa and represent all of the remaining congeners of X. minutus.        

 Attila spadiceus.  A polymorphic flycatcher represented by gray, rufous, and intermediate 

forms (Figure 3.3), the frequencies of which do not appear to be strongly tied to geography, 

subspecies boundaries, or song dialect (Ridgely 1994).  Twelve subspecies are currently recognized 

within A. spadiceus (Traylor 1979; Fitzpatrick 2004) although strong vocal differences in the dawn 

song between Middle and South American populations suggest A. spadiceus may be two species 

(Leger and Mountjoy 2003).   Uncommon to locally fairly common, A. spadiceus breeds primarily 

in primary forest of lowland tropical rainforest, but in parts of its wide range can be found in lower 

montane forest up to 1800 meters as well as tropical deciduous forest (Ridgely 1994; Stotz et al. 

1996; Fitzpatrick 2004).  It forages on large arthropods and small vertebrates predominately within 

the forest and its borders but will occasionally explore nearby clearings where large trees persist 

(Ridgely 1994).  A. spadiceus forages through all vegetation levels but is mainly found searching 

for prey from forest mid-story up to the canopy (Skutch 1971; Sherry and McDade 1982; Ridgely 

1994; Fitzpatrick 2004).   
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Figure 3.1 Automolus ochrolaemus.  LSUMZ specimens, all males:  1) MEXICO: Chiapas, 
cervinigularis voucher number 85777; 2) PANAMA: Bocas del Toro, hypophaeus vn 177721; 3) 
PERU: Pasco, ochrolaemus vn 105969; 4) BOLIVIA: Pando, ochrolaemus vn 132527; 5) 
GUYANA: Kopinang River, turdinus vn 175385.
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Figure 3.2 Xenops minutus. LSUMZ specimens, all males:  1) MEXICO: Chiapas, mexicanus 
voucher number 167154; 2) PANAMA: Panama, ridgwayi vn 163566; 3) PANAMA: Darien, 
littoralis vn 108301; 4) GUYANA, ruficaudus vn 175388; 5) PERU: Loreto, obsoletus vn 92317; 6) 
BOLIVIA: Beni, obsoletus vn 124094; 7) BRAZIL: Sao Paulo, minutus vn 52760.
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Figure 3.3 Attila spadiceus.  LSUMZ specimens, all males:  1) MEXICO: Oaxaca, pacificus 
voucher number (vn) 33183; 2) MEXICO: Tabasco, flammulatus vn 27202; 3) PANAMA: Panama, 
citreopyga vn 163663; 4) PANAMA: Colon, sclateri vn 164225; 5) PERU: San Marten, spadiceus 
vn 117176; 6) PERU: San Marten, spadiceus vn 117177; 7) PERU: Loreto, spadiceus vn 110648; 8) 
SURINAME, spadiceus vn 178366; and 9) BOLIVIA: Santa Cruz, spadiceus vn 137517. 
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A) MEXICO (Colima), song. 
Recorded by Dan Lane. 

 

B) COSTA RICA, song.  
Recorded by Cesar Sanchez. 

 
C) MEXICO (Colima), call.  
Recorded by Dan Lane. 

 

D) COSTA RICA, call.  
Recorded by Cesar Sanchez. 

 

E) PERU, song. 
Recorded by Dan Lane. 

 

Figure 3.4 Vocalizations of Attila spadiceus. 
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Figure 3.5 Tityra semifasciata. LSUMZ specimens, all males:  1) MEXICO: Oaxaca, griseiceps 
voucher number 33189; 2) PANAMA: Chiriqui, costaricensis vn 163666; 3) PERU: Loreto, fortis 
vn 62333; 4) BOLIVIA: Beni, fortis vn 124247. 
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  I sampled 77 individuals of A. spadiceus (Appendix E, Figure 3.9) representing seven of the 

12 recognized subspecies (Traylor 1979; Fitzpatrick 2004).  Subspecies not represented are taxa 

with restricted ranges (cozumelae of Cozumel Island; salvadorensis of El Salvador and 

northwestern Nicaragua; uropygiatus of coastal eastern Brazil) and/or distributions found primarily 

in Colombia (parvirostris of Santa Marta and Maracaibo Basin; caniceps of Magdalena and Sinú 

Valley).  A. cinnamomeus (1 sample), A. torridus (1 sample), A. citriniventris (3 samples), and A. 

bolivianus (1 sample) were included as outgroup taxa and represent four of the six congeners of A. 

spadiceus.  Previous work has shown the remaining congeners, A. phoenicurus and A. rufus, are 

distantly related to A. s. uropygiatus despite forming a monophyletic Attila with respect to 

approximately 70 tyrant-flycatcher species of southeastern Brazil (Chaves et al. 2008). 

 Tityra semifasciata.  A mainly frugivorous tityrid (Remsen et al. 2008) with nine recognized 

subspecies (Fitzpatrick 2004).  Across the species’ wide range, races vary slightly with no clear 

breaks related to morphology and voice (Fitzpatrick 2004; see Figure 3.5).  Fairly common to 

common, T. semifasciata is more abundant west of the Andes and is largely replaced to the east by 

T. cayana, though both are found together locally (Ridgely 1994).  T. semifasciata breeds in several 

types of habitat including montane forests up to 1200 meters, but mainly tropical lowland evergreen 

forest (Stotz et al. 1996).  It forages amid the higher reaches of the canopy in humid forest, 

secondary woodlands, and their borders, but also ventures into open areas with scattered trees 

including forest clearings and savanna (Ridgely 1994; Stotz et al. 1996; Ridgely and Greenfield 

2001; Fitzpatrick 2004).     

 I sampled 40 individuals of T. semifasciata (Appendix F, Figure 3.10), representing eight of 

the nine recognized subspecies (Fitzpatrick 2004).  Two subspecies (T. s. hannumi and griseiceps) 

are found in Sinaloa state in northwestern Mexico and it is uncertain which subspecies (Individual 
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1, see Figure 3.10.A) was sampled.  Both congeners of T. semifasciata, T. cayana (3 samples) and 

T. inquisitor (10 samples), were included as outgroup taxa.   

DNA Extraction and Sequencing 

 Total genomic DNA was extracted from heart, liver, or muscle tissue preserved by freezing 

or ethanol using the standard protocol outlined in the Qiagen DNeasy Tissue Kit (QIAGEN, Inc., 

Valencia, CA).  The polymerase chain reaction (PCR) was used to amplify the ND2 and cyt b 

mitochondrial protein-coding genes.  PCR amplifications (25 µL) consisted of: 2.5 µL template 

DNA (~50 ng), 0.3 µL each primer (10 mM, Table 3.1), 0.5 µL dNTPs (10 mM: 2.5 mM each 

dATP, dTTP, dCTP, dGTP), 2.5 µL 10X with MgCl2 reaction buffer (15 mM), 0.1 Taq DNA 

polymerase (5 U/µL AmpliTaq, Applied Biosystems Inc., Foster City, CA), and 18.7 µL sterile 

dH2O.  PCR temperature profiles are described in Table 3.1.  Double-stranded PCR products were 

purified using 20% poly-ethylene glycol (PEG), then cycle-sequenced using 1.75 µL 5X sequencing 

buffer (ABI), 1 µL sequencing primer (10mM, Table 3.1), 2.25 µL template, 0.35 µL Big Dye 

Terminator Cycle-Sequencing Kit version 3.1 (ABI), and 1.65 µL sterile dH2O for a total volume of 

7 µL.  Cycle-sequenced reactions were cleaned using Sephadex (G-50 fine) columns and analyzed 

on an ABI 3100 Genetic Analzyer.  Consensus sequences were compiled from both forward and 

reverse sequences.  Contigs for each individual were assembled and edited using Sequencer version 

4.6 (GeneCodes, Ann Arbor, MI) and the entire length of each sequence was examined by eye to 

confirm base calls.  The cyt b and ND2 coding regions were checked in Sequencer 4.6 for the 

presence of stop codons to confirm open reading frames. 

Phylogenetic Analyses 

 Prior to analyzing the combined mitochondrial dataset for each species, I performed a 

partition-homogeneity test (Farris et al. 1994) using PAUP* 4.0b10 (Swofford 2001) with 100 
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Table 3.1 Primers and PCR temperature profiles. 
ND2:  
L5215 5'-TAT CGG GCC CAT ACC CCG AAA AT-5' 
H6313  5'-CTC TTA TTT AAG GCT TTG AAG GC-3' 
PCR temperature profiles consisted of an initial denaturation of 2 min at 94°C followed by 35 cycles of 
30 sec at 94°C, 30 sec at 50-51°C, and 2 min at 72°C, with a final extension of 5 min at 72°C. 

cyt b:  
L14990  5'-CCA TCC AAC ATC TCA GCA TGA TGA AA-3' 
H15915  5'-AAC TGC AGT CAT CTC CGG TTT ACA AGA C-3' 
PCR temperature profiles consisted of an initial denaturation of 2 min at 94°C followed by 35 cycles of 
30 sec at 94°C, 30 sec at 45-48°C, and 2 min at 72°C, with a final extension of 5 min at 72°C. 
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Figure 3.6 Proposed paleo-
distribution of forest refugia 
and a priori population 
designations based on areas 
of endemism.  (A) Trans-
Andean refugia during 
Pleistocene and post-
Pleistocene periods of 
drought (Haffer 1967); (B) 
postulated distribution of 
forest refugia based on 
distributions of birds, 
butterflies, plants, soil type, 
and precipitation (Whitmore 
and Prance 1987); (C) study 
populations based largely on 
neo-tropical lowland areas of 
endemism using raw 
distributions of terrestrial 
vertebrates (see text). 
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Figure 3.7 Maximum-likelihood gene tree for Automolus ochrolaemus.  Node support given by ML 
bootstrap values and, second, Bayesian posterior probabilities.  (A) Map of sampling localities and 
species range provided by InfoNatura (2007).  (B)  Tree summary.   
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Figure 3.8 Maximum-likelihood gene tree for Xenops minutus.  Node support given by ML 
bootstrap values and, second, Bayesian posterior probabilities.  (A) Map of sampling localities and 
species range provided by InfoNatura (2007).  (B)  Tree summary. 
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Figure 3.9 Maximum-likelihood gene tree for Attila spadiceus.  Node support given by ML 
bootstrap values and, second, Bayesian posterior probabilities.  (A) Map of sampling localities and 
species range provided by InfoNatura (2007).  (B)  Tree summary. 
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Figure 3.10 Maximum-likelihood gene tree for Tityra semifasciata.  Node support given by ML 
bootstrap values and, second, Bayesian posterior probabilities.  (A) Map of sampling localities and 
species range provided by InfoNatura (2007).  (B)  Tree summary 
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heuristic replicates to detect any incongruence between the phylogenetic signals of cyt b versus  

ND2.   Phylogenetic analyses were performed using maximum-likelihood (ML) methods with 

RAxML v. 7.0.4 (Stamatakis 2006) and Bayesian methods with MRBAYES v. 3.1 (Hulsenbeck and 

Ronquist 2001).  ML analysis was conducted using the rapid bootstrap (with 1000 replicates) 

assuming a General Time Reversible (GTR) model of nucleotide substitution (-m GTRCAT).  A 

final (“best tree”) ML search was performed using a GTR model with gamma distribution 

approximated by 4 discrete categories and included an estimate of the proportion of invariable sites 

(-m GTRGAMMAI).  To assess nodal support in the ML analysis I constructed a consensus tree 

using the 1000 bootstrap replicates and 50% majority-rules in PAUP* 4.0b10.  Bayesian analysis 

was conducted using the GTR model with gamma-distributed rate variation across sites (nst  = 6, 

rates = gamma).  Four Markov chains were run simultaneously for 2,000,000 generations with trees 

sampled every 1000 generations.  For each chain, stable likelihood values were obtained at 

approximately 20,000 generations, thus trees sampled prior to this point were discarded as burn-in.  

The remaining 1,980 trees were used to construct a 50% majority rules consensus tree in PAUP* 

4.0b10.  For the Bayesian analyses, support for nodes was assessed using posterior probabilities.           

Population Structure 

 Analysis of Molecular Variance.  I assessed the spatial clustering of genetic variation using 

analysis of molecular variance (AMOVA; Excoffier et al. 1992) in ARLEQUIN v. 3.1.  For this 

analysis, I first made a priori delineations of population boundaries (Figure 3.6.C) based on 

postulated distributions of refugia (Figure 3.6.A and 3.6.B) and identified areas of endemism 

(Haffer 1974; Haffer 1978; Cracraft 1985; Haffer 1985; da Silva and Oren 1996; Ron 2000; lowland 

Amazonian areas of endemism used in this study largely adopted from  da Silva et al. 2005).  The 

AMOVA was performed at three hierarchical levels: between east and west of the Andes (cis/trans 
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populations), among areas of endemism within cis- and trans-Andes, and within designated areas of 

endemism.  Additional post-hoc analyses were conducted to account for cryptic population genetic 

breaks revealed during phylogenetic analyses. 

 Isolation by Distance.  For each species, the geographic distance between individual 

sampling localities was compared to genetic distance to test for isolation by distance (IBD) effects 

(Wright 1943).  The Euclidean distance between individual sampling localities was calculated with 

an equidistant conic projection (South America Equidistant Conic; central meridian: -60.00; 

standard parallel 1: -5.00; standard parallel 2: -42.00; latitude of origin: -32.00) using the program 

ARCGIS (http://www.esri.com).  PAUP* 4.010 (Swofford 2001) was used to calculate pairwise 

genetic distance between individuals under an HKY85 finite-sites substitution model (Hasegawa et 

al. 1985).  I tested for the influence of IBD on patterns of genetic variation at two spatial scales: (1) 

within cis- and trans-Andes; and (2) within areas of endemism previously described.  The first 

assignment included both longer transects and those that traversed known physical barriers, rivers in 

particular, permitting assessment of IBD in the context of a heterogeneous landscape.  The second 

treatment was sampled at a smaller spatial scale and across relatively contiguous habitat. 

Genetic Diversity 

 For each species, I also examined levels of genetic diversity and tested for historical 

demographic expansion.  These analyses were performed at hierarchical spatial scales (entire 

dataset, within cis- and trans-Andes, and within areas of endemism) to compare, across species, the 

relative role of distance and barriers on both measures.  Levels of nucleotide diversity (π; Nei 

1987) were calculated using DNASP v. 4.50.2 (Rozas et al. 2003).  Historical demographic 

expansion was inferred by the raggedness index (Harpending 1994), Fu’s Fs (Fu 1997), and R2 

(Ramos-Onsins and Rozas 2002) using DNASP. 
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RESULTS 

 For all four species, partition-homogeneity tests failed to reject the null hypothesis of a 

shared phylogenetic signal between ND2 and cyt b (Automolus ochrolaemus, P = 0.99; Xenops 

minutus, P  = 0.97; Attila spadiceus, P = 0.59; Tityra semifasciata, P = 1.00).  All results presented 

here were obtained using a concatenated ND2/cyt b dataset for all individuals.    

Phylogenetic Analyses 

 Phylogeographical mtDNA differentiation was relatively weak in the canopy species, Attila 

spadiceus and Tityra semifasciata (mean uncorrected pair-wise divergence: AS, 0.9 ± 0.8%; TS, 1.0 

± 0.7%), moderate in Automolus ochrolaemus (AO, 2.4 ± 1.6%), and strongest in Xenops minutus 

(XM, 5.6 ± 2.8%).  Despite varying levels of genetic divergence across major barriers, there were 

no shared haplotypes in cross-Andean populations and, with the exception of Automolus 

ochrolaemus, species exhibited reciprocal monophyly across this barrier.  Generally speaking, the 

Andean cordillera marked a deep divergence for all species examined (Figures 3.7, 3.8, 3.9, and 

3.10).  However, in three of the four species, the deepest genetic break was found within trans-

Andean populations.  The lone exception, Xenops, exhibited a strong break in Panama dividing the 

Chocó from the clade composed of all individuals west of the Panamanian isthmus.      

Population Structure 
 
 For all four species, an AMOVA revealed a large portion of overall genetic variation was 

partitioned across the Andes (range 41-71%, Table 3.2).  However, these values differed according 

to foraging stratum.  The percentage of overall genetic variation partitioned across the Andes,  

relative to within, was significantly higher (F = 50.1; df = 1,2, r2 = .96, P = .02) in the two canopy 

species compared to those of the understory while partitioning among areas of endemism was 

significantly higher (F = 85.6; df = 1,2, r2 = .98, P = .01) in understory versus canopy.  In the 
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Table 3.2 Hierarchical analysis of molecular variance (AMOVA). 

Percentage of variation (significance)a 

Source of variation Automolus 
ochrolaemus 

Xenops 
minutus 

Attila 
spadiceus 

Tityra 
semifasciata 

Among cis- and trans-Andes 40.9 
(P = 0.11) 

31.8 
(P = 0.02) 

70.7 
(P = 0.05) 

68.4 
(P = 0.07) 

Among areas of endemism 
within cis- and trans-Andes 

51.6 
(P < 0.0001) 

63.2 
(P < 0.0001) 

3.8 
(P < 0.01) 

1.4 
(P = 0.04) 

Within areas of endemism  7.5 
(P < 0.0001) 

5.0 
(P < 0.0001) 

25.48 
(P < 0.0001) 

30.2 
(P < 0.0001) 

 a Percentage of overall genetic variation apportioned to variation at three hierarchical spatial scales. 
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Regression of genetic distance versus geographic distance, r2 and level of significance (in parentheses) provided. 
 
Figure 3.11 Genetic distance (HKY-corrected) versus geographic distance at two spatial scales: 
within cis-/trans-Andes and within areas. 
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isolation-by-distance (IBD) analyses (Figure 3.11), trans-Andes populations had moderate effects 

across all four taxa.  Within the cis-Andes, canopy birds showed no relationship between genetic 

distance and geographic distance across the entire Amazon basin in sharp constrast to patterns 

observed in understory taxa.  Interestingly, IBD within areas of endemism, putatively contiguous 

lowland rainforest, was absent to low for all four species. 

Genetic Diversity 

 At larger spatial scales, where genetic structure is apparent in both understory taxa, 

nucleotide diversity (π) was higher relative to canopy birds, but not significantly different (F = 3.74; 

df = 1,2, r2 = .65, P = .19).  For three of the four taxa, after accounting for within-area structure, 

average within-area nucleotide diversity was lower in Amazonian than in trans-Andean 

populations.  Across all taxa, there were no signatures of historical demographic expansion in trans-

Andean populations, which contrasted to that observed within the Amazonian areas of endemism 

(Figure 3.12). 

DISCUSSION 
 

 I found that patterns of within-species genetic variation reflect contrasting regional 

biogeographic histories between trans-Andean and Amazonian populations.  Levels of genetic 

diversity and partitioning of genetic variation were comparable among species of the same foraging 

stratum.  While both canopy and understory birds exhibited marked divergence between cross-

Andean populations, understory species were structured at smaller spatial scales, particularly across 

riverine barriers of the Amazon basin.  Surprisingly, estimates of isolation by distance, a proxy for  

dispersal propensity, are similar through contiguous habitat for all study taxa.  Lastly, unique 

patterns of population structuring were observed for all four taxa. 
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Figure 3.12 Relative levels of nucleotide diversity and tests of historical demographic expansion 
across multiple spatial scales.  Ao = Automolus ochrolaemus, Xm = Xenops minutus, As = Attila 
spadiceus, and Ts = Tityra semifasciata. 
 
Numbers above bar represent sample sizes.  Symbols above bars (, , ) represent significant results (P < 0.05) for tests of historical demographic 
expansion. Low R2 values () and large negative Fs values () are associated with demographic expansion.  Raggedness (r) is a measure of the 
smoothness of the mismatch distribution with low values of r () characteristic of rapid demographic expansion.  P (r), P (R2), and P (Fs) describe the 
one-tailed probability that the observed estimate is lower than expected given a distribution of scores generated via 1000 coalescent simulations 
assuming a constant population size and incorporating an estimate of the current population genetic variation (θ).  Astericks () denote instances 
where low sample size precluded tests of expansion.  Sample sizes for Tityra semifasciata were small for several areas of endemism and precluded 
measures of genetic diversity. 
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Cis- Versus Trans-Andean Histories 

 Across all study taxa, there was evidence of historical demographic expansion within the 

Guiana, Inambari, and Rondonia areas of endemism and relatively stable demographic histories 

within the Napo and trans-Andean populations.  Cheviron et al. (2005a) found identical patterns of 

historical demography in Lepidothrix coronata, a widespread, understory piprid with cross-Andean 

distribution.  A similar pattern of population size stasis in the Napo versus expansion in 

southwestern Amazonia was demonstrated in a widespread lowland Amazonian forest frog, 

Physalaemus petersi  (Funk et al. 2007).  In a species complex of Amazona parrot, Eberhard and 

Bermingham (2004) revealed complex levels of cryptic diversity within Mesoamerica contrasted by 

complete lack of geographic structure across more than 2,000 km of Amazon basin.  This same 

relationship was found in two widespread species of lowland rainforest trees, Swietenia 

macrophylla (Novick et al. 2003) and Symphonia globulifera (Dick et al. 2003; Dick and Heuertz 

2008).  Lessa et al. (2003) compared the demographic histories of North American versus 

southwestern Amazonian mammals and found relatively moderate signatures of expansion in 

Inambari populations.  The authors commented that Inambari populations were highly structured 

geographically and this may have biased inferences, but interestingly, ten of the 11 Amazonian 

species exhibited evidence of population growth using coalescent-based methods.  Additional 

species comparisons are needed to assess whether regional differences observed here indeed 

represent community-wide processes.  

Understory Versus Canopy 

 Range-wide levels of genetic structure and diversity were strikingly similar among species 

of the same foraging stratum.  In contrast, levels and partitioning of genetic variation were different 

between understory and canopy species at various spatial scales.  Within cis-Andean distributions, 
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phylogeographic structure of understory species was clearly delineated by riverine barriers while 

both canopy species showed widespread connectivity across 3000km of the Amazon basin.  

Interestingly, isolation by distance effects were comparable across foraging strata when assessed 

within the areas of endemism.  This finding suggests levels of gene flow within contiguous habitat 

are similar between canopy and understory birds and that differences in population genetic 

structuring across bird groups arise due to differences in gene flow across major barriers, largely 

rivers.   

Automolus ochrolaemus 

 The basal split between Central America and Chocó/cis-Andes aligns with the contrasting 

plumages and vocalizations observed across the Panamanian Isthmus in the subspecies 

cervinigularis of Central America and pallidigularis of the Chocó (Remsen 2003; see Figure 3.1 in 

supplemental for examples of plumage variation within species).  Overall, the level of genetic 

structuring and differentiation within A. ochrolaemus is intermediate of the canopy species and 

Xenops.  This pattern was observed in a previous study involving 20 canopy and 20 understory 

species. Automolus ochrolaemus was among two other understory species (Myrmotherula axillaris 

and Dendrocincla fulliginosa) exhibiting relatively low genetic differentiation compared to other 

understory species.  All three species are able to persist in fragmented habitats and use secondary 

growth, forest edge, and gaps (Willis 1972; Loiselle and Blake 1994; Stouffer and Bierregaard 

1995; Cohn-Haft et al. 1997; Laurance 2004; Ferraz et al. 2007; Van Houtan et al. 2007).  The 

ability of these species to move more readily outside primary forest and across heterogeneous 

landscapes likely translates to greater dispersal potential compared to other understory species. 
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Xenops minutus 

 This species exhibited the highest degree of population structuring and showed striking 

congruence with boundaries, largely riverine barriers, delineating proposed areas of endemism.  

One notable exception was an individual from the Rondônia area of endemism, collected south of 

the Beni River, with a haplotype nested within the Inambari haplogroup.  This finding is possibly 

due to error in processing of the sample or contamination, and warrants additional investigation 

since it suggests barriers are perhaps permeable and that other forces (e.g. sexual selection) could be 

operating to structure populations.  The individual from Pernambuco, Brazil (sample 111, Figure 

3.8) grouped with Para (Tapajós and Xingu) birds of eastern Amazonia and not with southern 

Atlantic Forest Xenops, suggesting the nominate race is paraphyletic (Remsen 2003). This finding 

corroborates previous studies regarding the rich history of this region (da Silva et al. 2004; Carnaval 

and Bates 2007; Santos et al. 2007; Carnaval and Moritz 2008), and, importantly, mirrors 

relationships recently observed in another furnariid complex, Automolus leucophthalmus and A. 

paraensis (Zimmer 2008).   

 The phylogenetic relationship among X. minutus haplogroups is complex and represents a 

previously undescribed topology regarding area-relationships within cis-Andean populations (Bates 

et al. 1998).  The close relationship of the Guiana area of endemism with the Atlantic Forest is 

similar to inferences made in the Phaeothlypis complex (Lovette 2004b).  Surprisingly, this clade, 

distributed north-south from eastern Amazonia to the southern Atlantic Forest is completely 

bisected by a clade extending from Napo/Inambari areas of endemism east to Pernambuco in 

northern Atlantic Forest.    

 

 



 58 

Attila spadiceus 

 The basal split within Attila occurs between the disjunct distribution located along the 

southwestern coast of Mexico and the remaining individuals sampled.  The phylogenetic pattern, 

both temporally and spatially, is identical to that observed in Tityra semifasciata and suggests 

shared biogeographic history.  This region in Mexico was postulated as a forest refugia during the 

last glacial maximum (Whitmore and Prance 1987; see Figure 3.6.B) and isolation may have 

occurred during periods of glacial cooling.  However, assuming an avian molecular clock of 2% 

mtDNA divergence per million years (Lovette 2004a), gene divergence (average pairwise ~2.5%) 

occurred within the Pleistocene but well before the LGM.   

 The three major mtDNA haplogroups (western Mexico, eastern Mexico to the Chocó, and 

cis-Andes) align with geographic variation in vocalizations (Figure 3.4; see also Leger and 

Mountjoy 2003).   The dialect from western Mexico, both song and call, have fewer elements 

compared to vocalizations heard elsewhere in Central America and the Chocó.  Also, the west 

Mexican song is higher pitched, and call is much flatter in frequency (pers. obs. Dan Lane and 

Cesar Sanchez).  Differences between cis- and trans-Andean vocalizations were previously 

described by Leger and Mountjoy (2003).  

Tityra semifasciata 

 Similar to Attila, phylogeographic structure in Tityra semifasciata is largely constrained to 

trans-Andean populations with the deepest split occurring between western Mexico populations and 

the remaining individuals, including the cis-Andean haplogroup.  The weakly differentiated clade of 

trans-Andean birds extending from eastern Mexico south to Panama is distinct from T. s. nigriceps 

of western Ecuador.  The phylogeographic break within the Chocó, an area of relatively small-size 



 59 

but with high rates of endemism, clearly shows patterns of isolation in the Neotropics are complex 

at many spatial scales (Haffer 1967; Gentry 1982). 

 Here, I used a comparative phylogeographic approach, incorporating widely-distributed 

species, to examine the influence of species-specific traits on continental-scale patterns of genetic 

variation as well as to investigate differences in regional history, as was shown between Amazonia 

and Central America/Chocó.  Both findings are key in explaining large-scale patterns of beta-

diversity (McKnight et al. 2007) and elucidating evolutionary processes promoting the rich avian 

diversity in the Neotropics.  Future efforts should focus on adding species comparisons and 

investigating other species-specific traits, such as sociality and mating strategy, that are known to 

impact spatiotemporal structuring of populations.  Also, the influence of such traits on genetic 

variation is linked to mode of inheritance so emphasis should be placed on multilocus datasets, 

which will also provide more robust estimates of phylogenetic relationship and measures of 

historical demography. 
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CHAPTER 4:  STAGGERED ISOLATION ACROSS THE NORTHERN ANDES  
IN LOWLAND TROPICAL RAINFOREST BIRDS REVEALED BY  

COMPARATIVE MULTILOCUS PHYLOGEOGRAPHY  
 
INTRODUCTION 
 
 Large-scale geologic events are thought to be a common barrier to gene flow for entire 

communities of organisms (Avise 2000).  Empirical studies have found these barriers indeed 

partition genetic variation of co-distributed taxa into similar geographic regions (Knowlton et al. 

1993; Bermingham et al. 1997; Marko 2002; Lessios et al. 2003; Hickerson et al. 2006b).  Despite 

marked spatial congruence, there is often substantial across-taxa variation in pairwise genetic 

divergence between sister lineages presumed to have formed in concert due to the same emergent 

barrier (Bermingham and Lessios 1993; Knowlton et al. 1993; Brumfield and Capparella 1996; 

Bermingham et al. 1997; Knowlton and Weigt 1998; Lessios et al. 2001; Marko 2002; Hoffmann 

and Baker 2003; Lessios et al. 2003; Hickerson et al. 2006b).   

 Several explanations may account for this variance.  One source occurs when presumed 

species pairings from either side of a barrier are not in fact sister taxa of one another (Bermingham 

et al. 1997).  Also, differences in rates of molecular evolution across taxa can generate 

inconsistencies in branch lengths unrelated to biogeographic history, particularly among taxa with 

disparate life-histories (Bermingham and Lessios 1993; Bermingham et al. 1997).  However, given 

adequate sampling and comparisons made across closely related taxa, both taxonomic uncertainty 

and rate heterogeneity are not likely to explain the variance in observed genetic divergences.  

Instead, researchers have suggested the possibility of staggered isolation, via vicariance and/or 

across-barrier dispersal, in generating phylogeographic discontinuities across common barriers 

(Knowlton et al. 1993; Knowlton and Weigt 1998; Lessios et al. 2001; Marko 2002). 
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 In these cases, species may have responded differently during formation of a barrier with the 

timing of population divergences linked to species-specific traits that determine the relative 

effectiveness of the barrier to gene flow.  In Chapter 2, I tested for association between species-

specific traits and cross-Andean levels of genetic differentiation in cytochrome b across 40 co-

distributed species of lowland tropical rainforest birds.  I found a relationship between foraging 

stratum and levels of cross-Andes divergence with canopy species having significantly shallower 

divergences relative to understory birds.  In addition, I compared phylogeographic patterns across 

the 40 species and found understory species had significantly higher levels of population structure 

within Amazonia than canopy species.  These results suggest canopy birds have higher dispersal 

propensity compared to understory dwellers, a finding suggested by earlier studies (Capparella 

1988; Bierregaard 1990; Sekercioglu et al. 2002).   

 The timing of gene divergences is determined by historical patterns of gene flow and both 

the effective size and structuring of ancestral and daughter populations (Arbogast et al. 2002). 

Given a structured coalescent framework (Notohara and Umeda 2006), the dispersal propensity of a 

species influences these factors with similar effects on the gene genealogies of diverging 

populations.  The shallower cyt b divergences observed in canopy species relative to understory 

birds may be the result of more recent cross-Andes gene flow or due to a faster coalescence within 

smaller and/or less structured populations.  Thus, it remains unclear if the observed variance in 

cross-Andean divergences across the 40 taxa is the result of staggered versus simultaneous 

isolation. 

 To better address this question, I used a multi-locus approach to reexamine cross-Andean 

divergence in three co-distributed species of lowland tropical rainforest birds, Automolus 

ochrolaemus, Xenops minutus, and Attila spadiceus.  These species are representative of the wide 
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array of cross-Andean divergence, and its positive association with levels of population structure, 

observed in both Chapters 2 and 3.  Given that a distribution of gene trees underly the true historical 

relationship of populations comprising a species (Rosenberg and Nordborg 2002), I sampled 

additional loci and the variability of additional gene divergences in order to reduce the variance in 

estimates of population divergence and other demographic parameters, including migration 

(Donnelly and Tavare 1995; Jennings and Edwards 2005).  

 The objectives of this study were to (i) assess the phylogeographic structure of three widely 

distributed Neotropical birds species using mitochondrial and nuclear markers, (ii) compare patterns 

of cross-Andean divergences, and (iii) determine whether across-taxa divergences represent 

staggered versus simultaneous isolation. 

METHODS 
   
Study Species and Taxonomic Sampling 

 I obtained mitochondrial DNA (mtDNA) sequences for NADH dehydrogenase subunit 2 

(ND2; ~1060 base pairs), cytochrome b (cyt b; ~1029 base pairs) and three noncoding regions of 

autosomal DNA, intron 7 of the beta-fibrinogen gene (ßf7; 398-454 base pairs), and introns 17483 

(491-541 base pairs) and 16214 (404-414 base pairs) described by Backstöm et al. (2008)  from a 

total of 309 individuals:  103 Automolus ochrolaemus (Appendix C, Figure 4.1.A), 129 Xenops 

minutus (Appendix D, Figure 4.2.A), 77 Attila spadiceus (Appendix E, Figure 4.3.A). 

DNA Extraction and Sequencing 

 Total genomic DNA was extracted from heart, liver, or muscle tissue preserved by freezing 

or ethanol using the standard protocol outlined in the Qiagen DNeasy Tissue Kit (QIAGEN, Inc., 

Valencia, CA).  The polymerase chain reaction (PCR) was used to amplify all markers.  PCR 

amplifications (25 µL) consisted of: 2.5 µL template DNA (~50 ng), 0.3 µL each primer (10 mM, 
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Table 4.1), 0.5 µL dNTPs (10 mM: 2.5 mM each dATP, dTTP, dCTP, dGTP), 2.5 µL 10X with 

MgCl2 reaction buffer (15 mM), 0.1 Taq DNA polymerase (5 U/µL AmpliTaq, Applied Biosystems 

Inc., Foster City, CA), and 18.7 µL sterile dH2O.  PCR temperature profiles are described in Table 

4.1.  Double-stranded PCR products were purified using 20% poly-ethylene glycol (PEG), then 

cycle-sequenced using 1.75 µL 5X sequencing buffer (ABI), 1 µL sequencing primer (10mM, Table 

4.1), 2.25 µL template, 0.35 µL Big Dye Terminator Cycle-Sequencing Kit version 3.1 (ABI), and 

1.65 µL sterile dH2O for a total volume of 7 µL.  Cycle-sequenced reactions were cleaned using 

Sephadex (G-50 fine) columns and analyzed on an ABI 3100 Genetic Analzyer.  Consensus 

sequences were compiled from both forward and reverse sequences.  Contigs for each individual 

were assembled and edited using Sequencer version 4.6 (GeneCodes, Ann Arbor, MI) and the entire 

length of each sequence was examined by eye to confirm base calls.  The cyt b and ND2 coding 

regions were checked in Sequencer 4.6 for the presence of stop codons to confirm open reading 

frames. 

Phasing of Nuclear Haplotypes 

 There were sites represented by three nucleotides for ßf7 in Automolus ochrolaemus and all 

three nuclear loci in Xenops minutus.  I assumed these do not represent nuclear paralogs due to the 

prevalence of insertions/deletions and that sequences composed of more than two 

insertion/deletions were extremely rare.  Since methods of phasing do not accept sites represented 

by more than two nucleotides, where triplets occurred, the least common nucleotide was coded to 

the most common nucleotide.  I used two methods to infer the gametic phase of individuals that 

were polymorphic for more than one segregating site.  For individuals that contained one indel, 

where the forward and reverse sequences each contained an unambiguous 5'-end and an ambiguous 

3'-end represented by double peaks, I used the program CHAMPURU version 1.0 
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Table 4.1 Primers and PCR temperature profiles 
ND2:  
L5215 5'-TAT CGG GCC CAT ACC CCG AAA AT-5' 
H6313  5'-CTC TTA TTT AAG GCT TTG AAG GC-3' 
PCR temperature profiles consisted of an initial denaturation of 2 min at 94°C followed by 35 cycles of 30 
sec at 94°C, 30 sec at 50-51°C, and 2 min at 72°C, with a final extension of 5 min at 72°C. 
  
cyt b:  
L14990  5'-CCA TCC AAC ATC TCA GCA TGA TGA AA-3' 
H15915  5'-AAC TGC AGT CAT CTC CGG TTT ACA AGA C-3' 
PCR temperature profiles consisted of an initial denaturation of 2 min at 94°C followed by 35 cycles of 30 
sec at 94°C, 30 sec at 45-48°C, and 2 min at 72°C, with a final extension of 5 min at 72°C. 
  
BF7:  
Fib7-453L 5'-GTA CTT TAC AAC TGA GCT CCT-3' 
Fib7-U 5'-GGA GAA AAC AGG ACA ATG ACA ATT CAC-3' 
PCR temperature profiles consisted of an initial denaturation of 5 min at 94°C followed by 35 cycles of 30 
sec at 94°C, 30 sec at 55°C, and 1 min at 72°C, with a final extension of 10 min at 72°C. 
  
16214:  
16214For 5'-GCA TAC ATC AGA CCA TCT CC-3' 
16214Rev 5'-TCA ACC ATA TCA GCC ACA GC-3' 
PCR temperature profiles consisted of an initial denaturation of 5 min at 94°C followed by 35 cycles of 30 
sec at 94°C, 30 sec at 55°C, and 1 min at 72°C, with a final extension of 10 min at 72°C. 
  
17483:  
17483For 5'-GAA ATG TGG TCT GAA CAG TC-3' 
17483Rev 5'-TTG CTC TTG GCA CGA TAT GC-3' 
PCR temperature profiles consisted of an initial denaturation of 5 min at 94°C followed by 35 cycles of 30 
sec at 94°C, 30 sec at 54°C, and 1 min at 72°C, with a final extension of 10 min at 72°C. 
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 (Flot et al. 2006; Flot 2007, available at http://134.157.186.185/champuru/champuru.htm) to 

resolve haplotypes.  Next, I used a Bayesian inference with the program PHASE version 2.1 

(Stephens et al. 2001; Stephens and Donnelly 2003, available at http://www.stat.washington.edu/ 

stephens/software.html) to determine the most probable phase of alleles given the entire dataset.  

Inferred alleles for an individual were considered “phased” whenever the posterior probability was 

0.9 or greater.  Using this criteria, I ran iterations using both unambiguous, including previously 

“phased” individuals, and ambiguous sequence data until results were unchanging.  For the final 

dataset, I discarded individual allelic data with probabilities less than 0.6. 

Genetic Diversity 

 For each species, I examined levels of genetic diversity.  These analyses were performed at 

two hierarchical spatial scales:  using the entire dataset and within cis- and trans-Andes.  Levels of 

nucleotide diversity per site (π; Nei 1987) were calculated using DNASP v. 4.50.2 (Rozas et al. 

2003).   

Population Structure 

 Analysis of Molecular Variance.  For each nuclear locus, I assessed the spatial clustering of 

genetic variation using analysis of molecular variance (AMOVA; Excoffier et al. 1992) in 

ARLEQUIN v. 3.1.  For this analysis, I first made a priori delineations of population boundaries 

(Figure 3.6.C) based on postulated distributions of refugia (Figure 3.6.A and 3.6.B) and identified 

areas of endemism (Haffer 1974; Haffer 1978; Cracraft 1985; Haffer 1985; da Silva and Oren 1996; 

Ron 2000; lowland Amazonian areas of endemism used in this study largely adopted from  da Silva 

et al. 2005).  The AMOVA was performed at three hierarchical levels: between east and west of the 

Andes (cis/trans populations), among areas of endemism within cis- and trans-Andes, and within 
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designated areas of endemism.  The mitochondrial AMOVA can be referenced in Chapter 3 (Table 

3.2).  

 Networks.  Using the median-joining algorithm in NETWORK v. 4.1. (Bandelt et al. 1999; 

www.fluxus-engineering.com), I constructed haplotype networks for the three nuclear loci. 

 Geneland.  I inferred the number of populations (K) and their spatial arrangement using the 

Bayesian clustering program GENELAND (Guillot et al. 2005a; Guillot et al. 2005b; Guillot 2008; 

Guillot et al. 2008) via R (2008).  This model-based method uses multilocus genotypes from 

georeferenced individuals to assign population membership and generate spatial patterns of genetic 

discontinuities.  In these analyses, I incorporated only inferred allelic data from the three nuclear 

markers and assume all loci assort independently.   For each final run, I used information from 

preliminary runs to set priors (minimum/maximum number of populations) and employed both the 

uncorrelated frequency and spatial models (Guillot et al. 2005b; Guillot, Santos, and Estoup 2008, 

available at http://folk.uio.no/gillesg/Geneland/Geneland.html).  Final runs consisted of 10,000,000 

iterations with every hundredth iteration saved (thinning = 100) and post-processing draws using a 

“burn in” of 1000.   

Isolation with Migration Coalescent Analysis 

 I used the computer program “Isolation with Migration” (IM) to analyze the divergence 

between cis- and trans-Andean populations (Hey and Nielsen 2004).  Based on coalescent theory, 

IM uses Bayesian methodology via Markov chain Monte Carlo (MCMC) simulation to generate 

posterior probability distributions for multiple demographic parameters, including divergence time, 

all of which are scaled by mutation rate,  µ.  For each species and marker, I tested for intralocus 

recombination using a four-gametes test in SITES (Hey and Wakeley 1997) and incorporated the 

largest non-recombining block in subsequent IM analyses.   
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RESULTS 
 
 Regarding the nuclear dataset (see Chapter 3 for ND2/cyt b), levels of population structure 

varied across taxa while estimates of nucleotide diversity at both scales showed no clear patterns 

(Table 4.2).  In terms of phylogeograhic structure, Automolus is intermediate of Xenops and Attila 

with considerable partitioning across cis- and trans-Andes, however, loci vary widely (Figure 

4.1.B).  GENELAND identified two distinct clusters (K = 2) in the nuclear dataset (Figure 4.1.C) that 

correspond to the basal node in the mitochondrial gene tree  (Figure 4.1.B).  Xenops exhibited the 

highest degree of structure between cis-/trans-Andes accounting for 28-49% of the variation across 

the three loci (Figure 4.2.B).  This species also had the highest values of partitioned variation 

among the areas of endemism.  This is clearly evident in the GENELAND analysis where K = 8 

clusters were calculated based on the nuclear dataset (Figure 4.2.C).  These clusters map strongly to 

haplogroups in the mitochondrial gene tree (Figure 4.2.B).  Interestingly, the Imeri haplogroup 

grouped with individuals from the Atlantic Forest in the cluster analysis.  Within Attila, genetic 

variation was partitioned largely within the areas of endemism (85-93%) for all loci (Figure 4.3.B), 

showing only minor partitioning between cis- and trans-Andes.  Despite the low structure detected 

using AMOVA, GENELAND estimated K = 3 clusters in Attila (Figure 4.3.C) across the nuclear loci 

though support for each individual membership is low as seen by the contour mapping.  The north 

cluster from western Mexico is separated at the basal node in the mitochondrial gene tree.  

Interestingly, the rest of Central America and Chocó are partitioned with the eastern 

Panama/western Ecuador individuals grouping with cis-Andean individuals as was clearly detected 

within Automolus.  

 Presumably due to the structure and levels of sequence divergence in Xenops (see 

discussion), I was unable to provide meaningful results for cis-/trans-Andes divergence.  Instead, 
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for comparison, I conducted an analysis examining the break across the Isthmus of Panama between 

the Chocó and western Panama-Mexico (Figure 4.5).  Theta (θ) estimates were comparable across 

all analyses.  In Automolus, estimates of θ for cis-Andean/North Amazonian populations were 

slightly larger in size than trans-Andean/Chocó population, thought 95% highest posterior 

distributions (95HPD) overlap considerably (Figure 4.4.A).  In the trans-Andean Xenops 

comparison, estimated θ for the Chocó population is over twice that found west of the Isthmus 

(Figure 4.5.A).  Attila showed no differences in θ, with or without the western Mexico clade found 

at the base of the mitochondrial gene tree (Figure 4.6.A).  In all three taxa, there was evidence of 

asymmetric gene flow in an east to west direction.  Both Automolus (Figure 4.4.B) and Attila 

(Figure 4.6.B) exhibited a cis- to trans-Andean pattern of gene flow.  In Xenops, gene flow patterns 

are from the Chocó west (Figure 4.5.B).  As was shown in Chapter 2 using cyt b, estimated timing 

of divergence (t, scaled to µ) varied widely with Attila exhibiting the shallowest divergence (Figure 

4.6.C) when accounting for the basal western Mexico clade.  Automolus (Figure 4.4.C) was 

approximately twice the estimated t of Attila.  The within trans-Andes break in Xenops was the 

deepest divergence estimated (Figure 4.5.C) despite being a relatively shallow split on the 

mitochondrial gene tree (Figure 4.2.B). 

DISCUSSION 
 
 Both the phylogeographic data and demographic estimations using IM suggest the variance 

in across-taxa divergences reflects a history of staggered isolation versus a simultaneous event. 

Despite any shared mitochondrial haplotypes across cis- and trans-Andean populations, the nuclear 

data reveal evidence of asymmetrical gene flow in two species of lowland rainforest birds marked 

by relatively shallow cross-Andean divergence.  In all three study taxa, there are phylogeographic 

breaks across the Isthmus of Panama, that in Automolus, pre-date cross-Andean divergences.  



 69 

 

Table 4.2 Levels of nucleotide diversity. 
 BF7  16214  17483 
 N π  N π  N π 
Automolus ochrolaemus All 180 0.00362  152 0.00930  174 0.00453 

Cis-Andes 146 0.00338  122 0.00666  130 0.00218 
Trans-Andes 34 0.00380  30 0.00943  44 0.00414  

Xenops minutus All 196 0.01630  174 0.00844  196 0.00955 
Cis-Andes 152 0.01225  146 0.00717  150 0.00877 

Trans-Andes 44 0.00889  28 0.00513  46 0.00391 
Attila spadiceus All 154 0.00621  142 0.00050  140 0.00525 

Cis-Andes 74 0.00688  68 0.00076  66 0.00474 
Trans-Andes 80 0.00520  74 0.00026  74 0.00520 
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Figure 4.1 Automolus ochrolaemus. A) Sampling localities and areas of endemism, B) Maximum-
likelihood mitochondrial gene tree (see Chapter 3) and networks/AMOVAs of nuclear markers, C) 
Clusters estimated using GENELAND. 

B 

A C 
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Figure 4.2 Xenops minutus.  A) Sampling localities and areas of endemism, B) Maximum-
likelihood mitochondrial gene tree (see Chapter 3) and networks/AMOVAs of nuclear markers, C) 
Clusters estimated using GENELAND.

C A 

B 
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Figure 4.3 Attila spadiceus.  A) Sampling localities and areas of endemism, B) Maximum-
likelihood mitochondrial gene tree (see Chapter 3) and networks/AMOVAs of nuclear markers, C) 
Clusters estimated using GENELAND. 

C 
A 
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A) Posterior distribution 
of theta 
 
 
 
 
 
 
 
 
 
 

 
B) Posterior distribution 
of gene flow estimates 
 
 
 
 
 
 
 
 
 

C)  Posterior distribution 
of divergences 
 

 
 
Figure 4.4 IM analyses for Automolus ochrolaemus. 
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Figure 4.5 IM analyses for Xenops minutus. 
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A) Posterior distribution 
of theta 
 
 
 
 
 
 
 
 
 
 
 
B) Posterior distribution 
of gene flow estimates 
 
 
 
 
 
 
 
 
 
 

C)  Posterior distribution 
of divergences 
 

 
Figure 4.6 IM analyses for Attila spadiceus. 
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Staggered Isolation across the Andes 

 Since the Andes are approximately 2000 m or higher where ranges flank lowland rainforest, 

it is widely thought the Andes form an effective barrier to gene flow for lowland biota (Chapman 

1917; Chapman 1926; Cracraft and Prum 1988).  Published molecular studies of species complexes 

or populations distributed from either side of the Andes have highlighted the importance of the 

Andean uplift (Hackett 1996; Burns 1997; Zamudio and Greene 1997; Slade and Moritz 1998; 

Richardson et al. 2001; Cortes-Ortiz et al. 2003; Dick et al. 2003; Dick et al. 2004; Flanagan et al. 

2004; Eberhard and Bermingham 2005; Whinnett et al. 2005; Camargo et al. 2006; Roberts et al. 

2006).  Levels of divergence in these studies are wide-ranging suggesting isolation was not 

simultaneous across co-distributed taxa (see Chapter 2).  However, support for staggered isolation 

remains equivocal given the comparison, in many cases, involves disparate taxa and that most 

studies incorporated a single-locus approach in estimates of divergence. 

 My results using a multi-locus approach to address coalescent and demographic uncertainty 

suggest the variance in cross-Andean divergences across three species of lowland rainforest birds is 

the result of staggered isolation. This corroborates a preliminary result using approximate Bayesian 

computation (ABC) in the computer program MsBayes that showed the 40-taxa cyt b sequence data 

fit a scenario involving multiple isolation events (Hickerson et al. 2006b).  My results suggest the 

effective population sizes and level of population structuring between Attila and Automolus are 

comparable, and thus, the difference in levels of divergence are likely due to differences in the 

timing of isolation.  Using a substitution rate rather than a true mutation rate, the tentative IM 

divergence estimate in years (~1.4Mya) for Attila are comparable with a mtDNA divergence 

estimate (~1.3Mya) based on 2% sequencer divergence per million years.  Although the cross-

Andes divergence of Xenops could not be inferred using IM, it is worth noting that the timing of a 
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more recent divergence across the trans-Andean phylogeographic break between the Chocó and 

regions west of the Panamanian Isthmus (~4.6Mya) is roughly twice the cross-Andes divergence in 

Automolus.  

Historical cis- to trans-Andean Gene Flow 

 The across-Andes dispersal hypothesis states cis-/trans-Andean distributions were derived 

after the uplift of the Andes via dispersal (Chapman 1926; Haffer 1967).  An additional prediction 

of the hypothesis is a dispersal bias from east (cis-) to west (trans-) since the tropical zone reaches 

elevations of 1500 m on the eastern slope and 600-1200 m on the western slope (Chapman 1926).  

My results provide support for the second prediction in both Attila and Automolus.  However, the 

origin of cross-Andean lineages, via recent dispersal or vicariance, remains equivocal.  It is worth 

noting that, in both taxa, no mitochondrial haplotypes are shared across the Andes and all 

haplogroups are represented solely by either cis- or trans-Andean individuals. IM estimates of 

migration are measures of gene exchange since population splitting.  Thus, the signal of 

asymmetrical gene flow across nuclear loci in both Attila and Automolus must represent historical, 

rather than current migration.   

Isthmus of Panama 

 My results reveal deep phylogeographic breaks across the Isthmus of Panama in both 

Automolus and Xenops.  Clustering analyses of nuclear loci suggest structuring in Attila across this 

region as well.  The uplift of the Panamanian Isthmus approximately 3 million years ago is thought 

to have united tracts of lowland tropical rainforest of the North and South American continents 

(Duque-Caro 1990; Coates and Obando 1996; Coates et al. 2004) providing a dispersal corridor for 

terrestrial organisms into and out of South America.  However, molecular studies are showing this 

relatively confined region has a complex history (Witt 2004; Crawford et al. 2007; Dacosta and 
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Klicka 2008; Dick and Heuertz 2008).  The paleobotanical record is inconclusive regarding the late 

Tertiary and Pleistocene history of this region in terms of forest cover (Burnham and Graham 

1999).  The fossil mammal record is composed of ungulates and supports periods of open-land 

savanna, however, the pollen analyses support a mixed forest landscape.     

To better understand the rich diversity of South American fauna, evolutionary biologists 

must gain insight into mechanisms of diversification.  As seen in Xenops, phylogeographic patterns 

in the Neotropics may involve complicated and deep patterns of divergence.  The biogeographical 

history of this region is almost certainly complex, and potentially species-specific (Bush 1994).  

Teasing apart this history will require a thorough understanding of past geology and climate in order 

to generate explicit tests of long-standing process-level hypotheses (Bush 1994; Bates et al. 1998; 

Marks et al. 2002; Ribas et al. 2005).  Lastly, new population genetic models and statistical methods 

are needed to more accurately estimate the timing of divergence between populations, particularly 

those represented by reciprocally monophyletic lineages (Arbogast et al. 2002), as well as deal with 

complex models of population history that include population structuring.  
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CHAPTER 5:  CONCLUSIONS 

 An important goal in evolutionary biology has been to link the spatiotemporal genetic 

patterns within species to processes related to their ecology and life history.  To this aim, 

researchers have employed the comparative approach to investigate whether taxa with contrasting 

ecologies have coinciding disagreement in one or more population genetic measures.  These types 

of studies have traditionally focused on small assemblages and, consequently, a limited number of 

comparisons are made.  In this dissertation, I compared patterns of genetic differention for a large 

number of co-distributed species, thus, permitting the use of statistical analyses in determining 

ecological correlates of across-taxa variance in genetic divergence and other measures. 

 In Chapter 2, this approach revealed that ecological differences among species of lowland 

Neotropical rainforest birds explain much of the interspecific variance in population genetic 

differentiation across three biogeographic barriers in South America.  These findings are 

conservative given the underlying uncertainty inherent in single-locus estimates of population 

divergence.  I suggest that habitat-mediated differences in dispersal propensity between canopy and 

understory species of lowland rainforest birds have affected historical patterns of gene flow and/or 

effective population sizes to generate the interspecific variance in across-barrier divergences. 

 To explore the role of biogeography on range-wide patterns of genetic variation, in Chapter 

3, I examined the phylogeographic pattern of four species (two canopy and two understory) with 

broad distributions.  I found that patterns of within-species genetic variation reflect contrasting 

regional biogeographic histories between trans-Andean and Amazonian populations.  Levels of 

genetic diversity and partitioning of genetic variation were comparable among species of the same 

foraging stratum.  While both canopy and understory birds exhibited marked divergence between 

cross-Andean populations, understory species were structured at smaller spatial scales, particularly 
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across riverine barriers of the Amazon basin.  Surprisingly, estimates of isolation by distance, a 

proxy for dispersal propensity, are similar through contiguous habitat for all study taxa.  Lastly, 

unique patterns of population structuring were observed for each of the four study taxa suggesting 

demographic histories within the Neotropics are undoubtedly complex and largely species specific 

(Bush 1994).    

 For Chapter 4, I compared the multilocus phylogeography of three species with differing 

mtDNA patterns revealed in Chapter 3.  Incorporating additional loci addresses the coalescent and 

demographic uncertainty associated with single-locus approaches.  Both the phylogeographic data 

and demographic estimations using the coalescent-based program, Isolation with Migration (IM), 

suggest the variance in across-taxa divergences reflects a history of staggered isolation versus a 

simultaneous event. Despite the lack of shared mitochondrial haplotypes across cis- and trans-

Andean populations, the nuclear sequence data reveal evidence of asymmetrical gene flow in two 

species of lowland rainforest birds marked by relatively shallow cross-Andean divergence.  In all 

three study taxa, there are phylogeographic breaks across the Isthmus of Panama, and, in Automolus 

ochrolaemus, this break pre-dates the observed cross-Andean divergence.   

 Species’ demographic histories within western Amazonia are complex, as previous 

phylogeographic studies have revealed (Marks et al. 2002; Cheviron et al. 2005b).  Increased 

sampling of additional taxa, both at large and small spatial scales using a multilocus approach, are 

needed to evaluate general patterns of divergence across Amazonia as well as trans-Andean 

regions.  My dissertation provides a glimpse of the genetic variation housed in the Neotropics.     

 The relationships found in this study add support to previous arguments that low dispersal 

propensity facilitates geographic isolation and divergence (Slatkin 1987; Bohonak 1999; Belliure et 

al. 2000).  Studies using patterns assessed at the family-level in birds have shown the opposite 
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trend, linking greater dispersal to higher diversification rates (Owens et al. 1999; Phillimore et al. 

2006).  This conflict is likely the result of differences in the phylogenetic scale at which questions 

regarding ecological correlates of diversity are being addressed.  In my approach, I assessed within-

species patterns of diversification.  Insights gained at the population-level may better address the 

factors, including ecology, pertinent to speciation that could be overlooked in studies examining 

patterns at deeper phylogenetic levels.  To my knowledge this is the first large-scale comparative 

avian study to document a significant association between ecological traits of a species and its level 

of genetic differentiation.  My dissertation highlights the importance of basic natural history 

information in generating and testing associations between ecological and genetic parameters.  
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APPENDIX A: LIST OF TAXA 

Bird Family Species 
Max. 

Elevation
(Meters) 

Occupy 
Várzea 

Habitat Usea  
(Stotz Et Al. 

1996) 

Habitat 
Breadth 

Occupy 
Forest 
Edge 

Stratab 

(Stotz 
et al. 
1996) 

Stratab 
(This 

Study) 

Feeding 
Guildc 

Relative 
Abundance

d 

Mass 
(g) 

Primers 
e,f 

Tinamidae Crypturellus soui 1500 No F1E, F15, F3 Three+ Yes T U F C 200 E1, E2, 
I1, I2 

Columbidae Patagioenas 
subvinacea 1800 Yes F1,F2,F4 Three+ No C C F FC 172 E1, E2, 

I1, I2 

Columbidae Geotrygon 
saphirina 1100 No F1,F4 Two No T U O U 160.4 E1, E2, 

I1, I2 

Psittacidae Pyrrhura 
melanura 1500 No F1,F4 Two No C C F FC 83 E1, E2, 

I1, I2 

Psittacidae Pionus menstruus 1200 No F3,F8,F1E,F15 Three+ Yes C C F C 252 E1, E2, 
I1, I2 

Psittacidae Amazona farinosa 1200 No F1 One No C C F FC 649.5 E1, E2, 
I1, I2 

Cuculidae Piaya cayana 2500 Yes F1,F7,F15,F8.
F2 Three+ No C C I C 98 E1, E2, 

I1, I2 

Trogonidae Trogon collaris 2500 Yes F1,F4,F2,F7 Three+ No M/C C O C 55.5 E1, E2, 
I1, I2 

Trogonidae Trogon rufus 900 No F1,F15 Two No U/M U O U 52.5 E1, E2, 
I1, I2 

Momotidae Baryphthengus 
martii 1400 No F1 One No U/M U I FC 153 E1, E2, 

I1, I2 

Furnariidae Automolus 
ochrolaemus 1400 Yes F1,F2 Two No U U I C 38 E1, E2, 

I3, I4 

Furnariidae Automolus 
rubiginosus 2400 No F4,F1 Two No U/M U I U 47.5 E1, E2, 

I3, I4 

Furnariidae Sclerurus 
mexicanus 1800 No F1,F4 Two No T U I U 27 E1, E2, 

I3, I4 

Furnariidae Xenops minutus 1500 Yes F1,F2 Two No U/M U I FC 11 E1, E2, 
I3, I4 

Furnariidae Dendrocincla 
fuliginosa 1200 No F1 One No U/M U I FC 35.5 E1, E2, 

I3, I4 

Furnariidae Glyphorynchus 
spirurus 1250 No F1,F4 Two No U/M U I FC 16 E1, E2, 

I3, I4 

Thamnophilidae Cymbilaimus 
lineatus 1000 No F1 One No C C I FC 37.5 E1, E2, 

I1, I2 
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Thamnophilidae Taraba major 1400 No F1E,F15,F8,N
11,N14 Three+ Yes U U I C 60 E1, E2, 

I1, I2 

Thamnophilidae Myrmotherula 
ignota 900 Yes F1E,F15/F1E,

F2 Three+ Yes C C I FC 7 E1, E2, 
I1, I2 

Thamnophilidae Myrmotherula 
axillaris 1100 Yes F1,F2,F15 Three+ No U/M U I C 8 E1, E2, 

I1, I2 

Tyrannidae Colonia colonus 1800 No F4E,F1E,F15 Three+ Yes C C I FC 16.5 E1, E2, 
I1, I2 

Tyrannidae Attila spadiceus 1800 No F1,F7,F4 Three+ No M/C C I FC 38 E1, E2, 
I1, I2 

Cotingidae Querula 
purpurata 1050 No F1 One No C C O FC 101 E1, E2, 

I1, I2 

Pipridae Lepidothrix 
coronata  1400 No F1,F15 Two No U/M U F C 8.5 E1, E2, 

I1, I2 

Tityridae Tityra inquisitor 1200 No F1,F15 Two No C C F FC 45 E1, E2, 
I1, I2 

Tityridae Tityra 
semifasciata 1200 No F1,F4,F15 Three+ No C C F C 82.5 E1, E2, 

I1, I2 

Tityridae Schiffornis turdina 1500 No F1,F4 Two No U U O FC 31 E1, E2, 
I1, I2 

Vireonidae Hylophilus 
ochraceiceps 1200 No F1 One No U/M U I FC 11 E1, E2, 

I1, I2 

Troglodytidae Microcerculus 
marginatus 1200 No F1 One No T/U U I FC 19.5 E3, E2, 

I1, I2 

Troglodytidae Henicorhina 
leucosticta 1100 No F1,F4 Two No U U I FC 15.7 E3, E2, 

I1, I2 

Polioptilidae Microbates 
cinereiventris 1200 No F1 One No U U I FC 10.4 E1, E2, 

I1, I2 

Thraupidae Tangara gyrola 1800 No F4,F1 Two No C C I FC 22.3 E1, E2, 
I1, I2 

Thraupidae Tangara 
cyanicollis 2400 No F4,F1,F15 Three+ No C C I FC 17.4 E1, E2, 

I1, I2 

Thraupidae Tersina viridis 1600 No F1E,F15,F3,F8 Three+ Yes C C F FC 28.4 E1, E2, 
I1, I2 

Thraupidae Cyanerpes 
caeruleus 1100 Yes F1,F2,F15,F4 Three+ No C C I C 11.1 E1, E2, 

I1, I2 

Thraupidae Chlorophanes 
spiza 1600 Yes F1,F2,F8,F15 Three+ No C C O FC 16.8 E1, E2, 

I1, I2 
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Emberizidae Arremon 
aurantiirostris 1200 No F1 One No T U O FC 25 E1, E2, 

I1, I2 

Cardinalidae Saltator grossus 1200 No F1 One No M/C C F FC 47.3 E1, E2, 
I1, I2 

Parulidae Phaeothlypis 
fulvicauda 1100 No F1 One No T U I FC 13.6 E1, E2, 

I1, I2 

Icteridae Psarocolius 
angustifrons 2400 Yes F3,F2,F4E,F1

E,F15 Three+ Yes C C F C 306.7 E1, E2, 
I1, I2 

a Habitats:  F1 - Tropical lowland evergreen forest; F2 - Flooded tropical evergreen forest; F3 - River-edge forest; F4 - Montane evergreen forest; F7 - Tropical 
deciduous forest; F8 - Gallery forest; F15 - Secondary forest; N11 - Riparian thickets; N14 - Second-growth scrub; E - Edge (added to habitat type above)  
b Strata:  T – Terrestrial; T/U – Terrestrial/Understory; U – Understory; U/M – Understory/Midstory; M/C – Midstory/Canopy; C – Canopy 
c Feeding Guild:  F – Frugivore; I – Insectivore; O – Omnivore  
d Relative Abundance:  U – Uncommon; FC – Fairly common; C – Common 
e External Primers:  E1 - L14990 5'-CCA TCC AAC ATC TCA GCA TGA TGA AA-3'; E2 - H15915 5'-AAC TGC AGT CAT CTC CGG TTT ACA AGA C-3'; E3 - 
ND5emb1 5'-AGG ATC ATT CGC CCT ATC CAT-3' 
f Internal Primers:  I1 - cytb.mtf 5'-CAC GAR ACY GGR TCY AAY AAY CC-3'; I2 - cytb.intr 5'-GGR TTR TTR GAY CCR GTY TCG TG-3'; I3 - P5L 5'-CCT TCC 
TCC ACG AAA CAG GCT CAA ACA ACC C-3'; I4 - H658 5'-TCT TTG ATG GAG TAG TAG GGG TGG AAT GG-3' 
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Species Collection Tissue 
Number 

Outside 
Source 

(Genbank) 

Side of 
Andes 

Area of 
Endemism 
(Cracraft 

1985) 

Country State/Province/ 
Department Latitude Longitude 

Crypturellus soui ANSP 4690  trans Choco Ecuador Esmeraldas 0.670000 -78.860000 
Crypturellus soui LSUMZ 5065  cis Inambari Peru Loreto -3.498869 -72.716158 
Crypturellus soui LSUMZ 6048  cis Napo Ecuador Morona-Santiago -2.750000 -78.000000 
Crypturellus soui LSUMZ 15073  cis Rondonia Bolivia Santa Cruz -13.770000 -61.950000 
Crypturellus soui LSUMZ 15170  cis Rondonia Bolivia Santa Cruz -13.770000 -61.950000 
Crypturellus soui LSUMZ 100031  cis Rondonia Bolivia Santa Cruz -13.770000 -61.950000 
Patagioenas subvinacea ANSP 3118  trans Choco Ecuador Manabi -1.583333 -80.666667 

Patagioenas subvinacea FMNH SML10
45  cis Inambari Peru Madres De Dios -12.877300 -71.386500 

Patagioenas subvinacea LSUMZ 33054  cis Napo Peru Cajamarca -5.071667 -78.881667 
Patagioenas subvinacea LSUMZ 33062  cis Napo Peru Cajamarca -5.071667 -78.881667 
Patagioenas subvinacea LSUMZ 12314  cis Rondonia Bolivia Santa Cruz -14.270000 -60.990000 
Patagioenas subvinacea LSUMZ 12362  cis Rondonia Bolivia Santa Cruz -14.270000 -60.990000 
Geotrygon saphirina LSUMZ 11835  trans Choco Ecuador Esmeraldas 0.866667 -78.550000 
Geotrygon saphirina LSUMZ 10770  cis Inambari Peru Ucayali -9.193056 -74.383333 
Geotrygon saphirina ANSP 2638  cis Napo Ecuador Morona-Santiago -2.420000 -77.520000 
Pyrrhura melanura LSUMZ 11845  trans Choco Ecuador Esmeraldas 0.866667 -78.550000 
Pyrrhura melanura LSUMZ 29972  trans Choco Ecuador Pichincha 0.266667 -79.200000 
Pyrrhura melanura ANSP 5111 (AY751651) cis Napo Ecuador Sucumbios 0.166667 -77.300000 
Pyrrhura melanura ANSP 5112 (AY751652) cis Napo Ecuador Sucumbios 0.166667 -77.300000 
Pyrrhura melanura LSUMZ 6946  cis Napo Peru Loreto -3.142222 -72.721111 
Pionus menstruus ANSP 2300  trans Choco Ecuador Esmeraldas 1.030000 -78.580000 
Pionus menstruus IBUSP 2087 (EF517605) cis Inambari Brazil Acre -11.000000 -68.733330 
Pionus menstruus LSUMZ 10513  cis Inambari Peru Ucayali -9.193056 -74.383333 
Pionus menstruus IBUSP 2938 (EF517604) cis Rondonia Brazil Mato Grosso -9.900000 -55.900000 
Pionus menstruus LSUMZ 6804  cis Rondonia Bolivia Beni -14.750000 -67.070000 
Amazona farinosa ANSP 2128  trans Choco Ecuador Esmeraldas 1.030000 -78.580000 
Amazona farinosa ANSP 2233  trans Choco Ecuador Esmeraldas 1.030000 -78.580000 
Amazona farinosa LSUMZ 10625  cis Inambari Peru Ucayali -9.193056 -74.383333 
Piaya cayana LSUMZ 12177  trans Choco Ecuador Pichincha 0.033300 -78.800000 
Piaya cayana LSUMZ 4718  cis Inambari Peru Loreto -3.498869 -72.716158 
Piaya cayana LSUMZ 12390  cis Rondonia Bolivia Santa Cruz -14.270000 -60.990000 
Piaya cayana LSUMZ 12469  cis Rondonia Bolivia Santa Cruz -14.810000 -60.810000 
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Piaya cayana LSUMZ 14529  cis Rondonia Bolivia Santa Cruz -14.486667 -60.675278 
Piaya cayana LSUMZ 18359  cis Rondonia Bolivia Santa Cruz -14.833333 -60.416667 
Piaya cayana LSUMZ 36770  cis Rondonia Brazil Rondönia -10.760000 -64.750000 
Piaya cayana LSUMZ 37524  cis Rondonia Bolivia Santa Cruz -17.333333 -59.683333 
Trogon collaris ANSP 2032  trans Choco Ecuador Manabi -1.583333 -80.666667 
Trogon collaris LSUMZ 10760  cis Inambari Peru Ucayali -9.193056 -74.383333 
Trogon collaris LSUMZ 10657  cis Inambari Peru Ucayali -9.193056 -74.383333 
Trogon collaris LSUMZ 913  cis Inambari Bolivia La Paz -15.290000 -67.590000 
Trogon collaris LSUMZ 22702  cis Inambari Bolivia La Paz -15.188056 -68.255000 
Trogon collaris LSUMZ 18342  cis Rondonia Bolivia Santa Cruz -14.833333 -60.416667 
Trogon rufus ANSP 2380  trans Choco Ecuador Esmeraldas 1.030000 -78.580000 
Trogon rufus ANSP 2305  trans Choco Ecuador Esmeraldas 1.030000 -78.580000 
Trogon rufus LSUMZ 5060  cis Inambari Peru Loreto -3.489722 -72.791667 
Trogon rufus LSUMZ 27391  cis Inambari Peru Loreto -7.150000 -75.733333 
Trogon rufus LSUMZ 4256  cis Napo Peru Loreto -2.967500 -73.297500 
Baryphthengus martii ANSP 2281  trans Choco Ecuador Esmeraldas 1.030000 -78.580000 
Baryphthengus martii ANSP 2260  trans Choco Ecuador Esmeraldas 1.030000 -78.580000 
Baryphthengus martii LSUMZ 22906 Witt cis Inambari Bolivia La Paz -15.180000 -68.420000 
Baryphthengus martii LSUMZ 9657 Witt cis Inambari Bolivia Pando -11.470278 -68.778611 
Baryphthengus martii LSUMZ 27572 Witt cis Inambari Peru Loreto -7.133333 -75.683333 
Baryphthengus martii LSUMZ 11256 Witt cis Inambari Peru Ucayali -8.090833 -74.444722 
Baryphthengus martii ANSP 2680  cis Napo Ecuador Morona-Santiago -2.420000 -77.520000 
Baryphthengus martii LSUMZ 2817  cis Napo Peru Loreto -2.433056 -73.708056 
Baryphthengus martii LSUMZ 15241 Witt cis Rondonia Bolivia Santa Cruz -13.760000 -61.910000 
Automolus ochrolaemus ANSP 3436  trans Choco Ecuador Manabi -1.583333 -80.666667 
Automolus ochrolaemus ANSP 4306  trans Choco Ecuador Esmeraldas 0.660000 -79.440000 
Automolus ochrolaemus LSUMZ 8952  cis Inambari Bolivia Pando -11.470278 -68.778611 
Automolus ochrolaemus LSUMZ 9255  cis Inambari Bolivia Pando -11.470278 -68.778611 
Automolus ochrolaemus LSUMZ 10655  cis Inambari Peru Ucayali -9.193056 -74.383333 
Automolus ochrolaemus LSUMZ 11048  cis Inambari Peru Ucayali -8.090833 -74.444722 
Automolus ochrolaemus LSUMZ 11164  cis Inambari Peru Ucayali -8.090833 -74.444722 
Automolus ochrolaemus LSUMZ 11244  cis Inambari Peru Ucayali -8.090833 -74.444722 
Automolus ochrolaemus LSUMZ 22613  cis Inambari Bolivia La Paz -15.188056 -68.255000 
Automolus ochrolaemus LSUMZ 22633  cis Inambari Bolivia La Paz -15.188056 -68.255000 
Automolus ochrolaemus LSUMZ 22841  cis Inambari Bolivia La Paz -15.188056 -68.255000 
Automolus ochrolaemus LSUMZ 31359  cis Inambari Brazil Rondönia -8.942933 -64.084047 
Automolus ochrolaemus LSUMZ 39944  cis Inambari Peru Loreto -7.566667 -75.891944 
Automolus ochrolaemus LSUMZ 40504  cis Inambari Peru Loreto -7.594444 -75.916111 
Automolus ochrolaemus LSUMZ 40554  cis Inambari Peru Loreto -7.561111 -75.916111 
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Automolus ochrolaemus LSUMZ 46009  cis Inambari Peru San Marten -6.733333 -77.383333 
Automolus ochrolaemus LSUMZ 46133  cis Inambari Peru San Marten -6.733333 -77.383333 
Automolus ochrolaemus ANSP 5854  cis Napo Ecuador Sucumbios 0.250000 -77.250000 
Automolus ochrolaemus ANSP 5856  cis Napo Ecuador Sucumbios 0.250000 -77.250000 
Automolus ochrolaemus LSUMZ 4159  cis Napo Peru Loreto -2.819997 -73.273803 
Automolus ochrolaemus LSUMZ 4264  cis Napo Peru Loreto -2.819997 -73.273803 
Automolus ochrolaemus LSUMZ 4353  cis Napo Peru Loreto -2.819997 -73.273803 
Automolus ochrolaemus LSUMZ 12479  cis Rondonia Bolivia Santa Cruz -14.810000 -60.810000 
Automolus ochrolaemus LSUMZ 12537  cis Rondonia Bolivia Santa Cruz -14.810000 -60.810000 
Automolus ochrolaemus LSUMZ 14488  cis Rondonia Bolivia Santa Cruz -14.486667 -60.675278 
Automolus ochrolaemus LSUMZ 14655  cis Rondonia Bolivia Santa Cruz -14.486667 -60.675278 
Automolus ochrolaemus LSUMZ 18161  cis Rondonia Bolivia Santa Cruz -14.833333 -60.416667 
Automolus ochrolaemus LSUMZ 18197  cis Rondonia Bolivia Santa Cruz -14.833333 -60.416667 
Automolus ochrolaemus LSUMZ 18244  cis Rondonia Bolivia Santa Cruz -14.833333 -60.416667 
Automolus ochrolaemus LSUMZ 18444  cis Rondonia Bolivia Santa Cruz -14.833333 -60.416667 
Automolus ochrolaemus LSUMZ 18522  cis Rondonia Bolivia Santa Cruz -14.840000 -60.730000 
Automolus ochrolaemus LSUMZ 36699  cis Rondonia Brazil Rondönia -10.760000 -64.750000 
Automolus rubiginosus LSUMZ 11736  trans Choco Ecuador Esmeraldas 0.866667 -78.550000 
Automolus rubiginosus LSUMZ 11807  trans Choco Ecuador Esmeraldas 0.866667 -78.550000 
Automolus rubiginosus LSUMZ 11818  trans Choco Ecuador Esmeraldas 0.866667 -78.550000 
Automolus rubiginosus LSUMZ 5388  cis Inambari Peru San Marten -6.394444 -76.340278 
Automolus rubiginosus LSUMZ 10684  cis Inambari Peru Ucayali -9.193056 -74.383333 
Automolus rubiginosus LSUMZ 11246  cis Inambari Peru Ucayali -8.090833 -74.444722 
Automolus rubiginosus LSUMZ 28056  cis Inambari Peru Loreto -7.133333 -75.683333 
Sclerurus mexicanus ANSP 2410  trans Choco Ecuador Esmeraldas 1.030000 -78.580000 
Sclerurus mexicanus LSUMZ 11742  trans Choco Ecuador Esmeraldas 0.866667 -78.550000 
Sclerurus mexicanus LSUMZ 11813  trans Choco Ecuador Esmeraldas 0.866667 -78.550000 
Sclerurus mexicanus LSUMZ 5452  cis Inambari Peru San Marten -6.394444 -76.340278 
Sclerurus mexicanus LSUMZ 1991  cis Inambari Peru Pasco -10.410833 -74.964722 
Sclerurus mexicanus LSUMZ 1078  cis Inambari Bolivia La Paz -15.290000 -67.590000 
Sclerurus mexicanus LSUMZ 8897  cis Inambari Bolivia Pando -11.470278 -68.778611 
Sclerurus mexicanus LSUMZ 40524  cis Inambari Peru Loreto -7.594444 -75.916111 
Sclerurus mexicanus ANSP 4877  cis Napo Ecuador Napo -0.660000 -77.316600 
Sclerurus mexicanus ANSP 4454  cis Napo Ecuador Zamora-Chinchipe -3.625000 -78.586900 
Sclerurus mexicanus LSUMZ 6765  cis Rondonia Bolivia Cochabamba -17.458611 -65.395556 
Xenops minutus ANSP 2227  trans Choco Ecuador Esmeraldas 1.030000 -78.580000 
Xenops minutus ANSP 4331  trans Choco Ecuador Esmeraldas 0.660000 -79.440000 
Xenops minutus ANSP 3542  trans Choco Ecuador Azuay -2.500000 -79.416667 
Xenops minutus ANSP 2315  trans Choco Ecuador Esmeraldas 1.030000 -78.580000 
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Xenops minutus LSUMZ 11948  trans Choco Ecuador Esmeraldas 0.866667 -78.550000 
Xenops minutus LSUMZ 10510  cis Inambari Peru Ucayali -9.193056 -74.383333 
Xenops minutus LSUMZ 10854  cis Inambari Peru Ucayali -9.193056 -74.383333 
Xenops minutus LSUMZ 11276  cis Inambari Peru Ucayali -8.090833 -74.444722 
Xenops minutus LSUMZ 22778  cis Inambari Bolivia La Paz -15.188056 -68.255000 
Xenops minutus LSUMZ 4706  cis Inambari Peru Loreto -3.498869 -72.716158 
Xenops minutus LSUMZ 5442  cis Inambari Peru San Marten -6.394444 -76.340278 
Xenops minutus LSUMZ 6761  cis Inambari Bolivia Beni -14.250000 -67.600000 
Xenops minutus LSUMZ 8988  cis Inambari Bolivia Pando -11.470278 -68.778611 
Xenops minutus LSUMZ 9026  cis Inambari Bolivia Pando -11.470278 -68.778611 
Xenops minutus LSUMZ 9452  cis Inambari Bolivia Pando -11.470278 -68.778611 
Xenops minutus ANSP 1484  cis Napo Ecuador Morona-Santiago -3.400000 -78.550000 
Xenops minutus LSUMZ 4244  cis Napo Peru Loreto -2.967500 -73.297500 
Xenops minutus LSUMZ 2754  cis Napo Peru Loreto -3.179269 -72.903511 
Xenops minutus LSUMZ 42756  cis Napo Peru Loreto -4.280833 -77.237778 
Xenops minutus LSUMZ 42810  cis Napo Peru Loreto -4.280833 -77.237778 
Xenops minutus LSUMZ 4328  cis Napo Peru Loreto -2.819997 -73.273803 
Xenops minutus LSUMZ 6862  cis Napo Peru Loreto -3.313722 -72.519992 
Xenops minutus LSUMZ 7127  cis Napo Peru Loreto -3.313722 -72.519992 
Xenops minutus LSUMZ 12264  cis Rondonia Bolivia Santa Cruz -14.270000 -60.990000 
Xenops minutus LSUMZ 12378  cis Rondonia Bolivia Santa Cruz -14.270000 -60.990000 
Xenops minutus LSUMZ 12760  cis Rondonia Bolivia Santa Cruz -13.566600 -61.233300 
Xenops minutus LSUMZ 14683  cis Rondonia Bolivia Santa Cruz -14.486667 -60.675278 
Xenops minutus LSUMZ 14752  cis Rondonia Bolivia Santa Cruz -14.486667 -60.675278 
Xenops minutus LSUMZ 15114  cis Rondonia Bolivia Santa Cruz -13.770000 -61.950000 
Xenops minutus LSUMZ 18175  cis Rondonia Bolivia Santa Cruz -14.833333 -60.416667 
Xenops minutus LSUMZ 36719  cis Rondonia Brazil Rondönia -10.760000 -64.750000 
Xenops minutus LSUMZ 36696  cis Rondonia Brazil Rondönia -10.760000 -64.750000 
Xenops minutus LSUMZ 36779  cis Rondonia Brazil Rondönia -10.760000 -64.750000 
Dendrocincla fuliginosa LSUMZ 11927 Perez trans Choco Ecuador Esmeraldas 0.866667 -78.550000 
Dendrocincla fuliginosa LSUMZ 11754 Perez trans Choco Ecuador Esmeraldas 0.866667 -78.550000 
Dendrocincla fuliginosa LSUMZ 12096 Perez trans Choco Ecuador Pichincha 0.033300 -78.800000 
Dendrocincla fuliginosa LSUMZ 11175 Perez cis Inambari Peru Ucayali -8.090833 -74.444722 
Dendrocincla fuliginosa LSUMZ 10499 Perez cis Inambari Peru Ucayali -9.193056 -74.383333 
Dendrocincla fuliginosa LSUMZ 5478 Perez cis Inambari Peru San Marten -6.328889 -76.303611 
Dendrocincla fuliginosa LSUMZ 27822 Perez cis Inambari Peru Loreto -7.083333 -75.650000 
Dendrocincla fuliginosa LSUMZ 5438 Perez cis Inambari Peru San Marten -6.394444 -76.340278 
Dendrocincla fuliginosa LSUMZ 10694 Perez cis Inambari Peru Ucayali -9.193056 -74.383333 
Dendrocincla fuliginosa LSUMZ 8947 Perez cis Inambari Bolivia Pando -11.470278 -68.778611 
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Dendrocincla fuliginosa LSUMZ 9193 Perez cis Inambari Bolivia Pando -11.470278 -68.778611 
Dendrocincla fuliginosa LSUMZ 6059 Perez cis Napo Ecuador Morona-Santiago -2.750000 -78.000000 
Dendrocincla fuliginosa LSUMZ 12326 Perez cis Rondonia Bolivia Santa Cruz -14.270000 -60.990000 
Dendrocincla fuliginosa LSUMZ 14452 Perez cis Rondonia Bolivia Santa Cruz -14.486667 -60.675278 
Glyphorynchus spirurus LSUMZ 11916  trans Choco Ecuador Esmeraldas 0.866667 -78.550000 
Glyphorynchus spirurus LSUMZ 11976  trans Choco Ecuador Esmeraldas 0.866667 -78.550000 
Glyphorynchus spirurus LSUMZ 11131  cis Inambari Peru Ucayali -8.090833 -74.444722 
Glyphorynchus spirurus LSUMZ 2042  cis Inambari Peru Pasco -10.410833 -74.964722 
Glyphorynchus spirurus LSUMZ 22619  cis Inambari Bolivia La Paz -15.188056 -68.255000 
Glyphorynchus spirurus LSUMZ 22842  cis Inambari Bolivia La Paz -15.188056 -68.255000 
Glyphorynchus spirurus LSUMZ 8836  cis Inambari Bolivia Pando -11.470278 -68.778611 
Glyphorynchus spirurus LSUMZ 7227  cis Napo Peru Loreto -3.313722 -72.519992 
Glyphorynchus spirurus LSUMZ 7233  cis Napo Peru Loreto -3.313722 -72.519992 
Glyphorynchus spirurus LSUMZ 7234  cis Napo Peru Loreto -3.313722 -72.519992 
Glyphorynchus spirurus LSUMZ 4549  cis Napo Peru Loreto -2.819997 -73.273803 
Glyphorynchus spirurus LSUMZ 5967  cis Napo Ecuador Morona-Santiago -2.750000 -78.000000 
Glyphorynchus spirurus LSUMZ 12267  cis Rondonia Bolivia Santa Cruz -14.270000 -60.990000 
Cymbilaimus lineatus ANSP 4686  trans Choco Ecuador Esmeraldas 0.670000 -78.860000 
Cymbilaimus lineatus LSUMZ 11156  cis Inambari Peru Ucayali -8.090833 -74.444722 
Cymbilaimus lineatus ANSP 1630  cis Napo Ecuador Morona-Santiago -3.400000 -78.550000 
Cymbilaimus lineatus ANSP 2641  cis Napo Ecuador Morona-Santiago -2.420000 -77.520000 
Cymbilaimus lineatus LSUMZ 4157  cis Napo Peru Loreto -2.819997 -73.273803 
Cymbilaimus lineatus LSUMZ 6890  cis Napo Peru Loreto -3.313722 -72.519992 
Cymbilaimus lineatus LSUMZ 18168  cis Rondonia Bolivia Santa Cruz -14.833333 -60.416667 
Taraba major ANSP 3438  trans Choco Ecuador Manabi -1.583333 -80.666667 
Taraba major ANSP 3432  trans Choco Ecuador Manabi -1.583333 -80.666667 
Taraba major LSUMZ 10797  cis Inambari Peru Ucayali -9.193056 -74.383333 
Taraba major LSUMZ 10831  cis Inambari Peru Ucayali -9.193056 -74.383333 
Taraba major ANSP 1567  cis Napo Ecuador Morona-Santiago -3.400000 -78.550000 
Taraba major LSUMZ 37544  cis Rondonia Bolivia Santa Cruz -17.333333 -59.683333 
Taraba major LSUMZ 37956  cis Rondonia Bolivia Santa Cruz -17.200000 -59.333333 
Taraba major LSUMZ 38086  cis Rondonia Bolivia Santa Cruz -16.666667 -58.500000 
Taraba major LSUMZ 38909  cis Rondonia Bolivia Santa Cruz -18.770778 -63.092694 
Myrmotherula ignota LSUMZ 29954  trans Choco Ecuador Pichincha 0.132667 -79.132500 
Myrmotherula obscura LSUMZ 4908  cis Inambari Peru Loreto -3.489722 -72.791667 
Myrmotherula obscura LSUMZ 10704  cis Inambari Peru Ucayali -9.193056 -74.383333 
Myrmotherula axillaris ANSP 2115  trans Choco Ecuador Esmeraldas 1.030000 -78.580000 
Myrmotherula axillaris ANSP 2271  trans Choco Ecuador Esmeraldas 1.030000 -78.580000 
Myrmotherula axillaris LSUMZ 5468  cis Inambari Peru San Marten -6.394444 -76.340278 
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Myrmotherula axillaris LSUMZ 27895  cis Inambari Peru Loreto -7.083333 -75.650000 
Myrmotherula axillaris LSUMZ 42520  cis Inambari Peru Loreto -5.313333 -76.275556 
Myrmotherula axillaris LSUMZ 2512  cis Napo Peru Loreto -3.179269 -72.903511 
Myrmotherula axillaris LSUMZ 2644  cis Napo Peru Loreto -3.179269 -72.903511 
Myrmotherula axillaris LSUMZ 4319  cis Napo Peru Loreto -2.819997 -73.273803 
Myrmotherula axillaris LSUMZ 7051  cis Napo Peru Loreto -3.313722 -72.519992 
Myrmotherula axillaris LSUMZ 42872  cis Napo Peru Loreto -4.280833 -77.237778 
Myrmotherula axillaris LSUMZ 12700  cis Rondonia Bolivia Santa Cruz -13.566600 -61.233300 
Myrmotherula axillaris LSUMZ 14916  cis Rondonia Bolivia Santa Cruz -13.770000 -61.950000 
Myrmotherula axillaris LSUMZ 15145  cis Rondonia Bolivia Santa Cruz -13.770000 -61.950000 
Myrmotherula axillaris LSUMZ 18408  cis Rondonia Bolivia Santa Cruz -14.833333 -60.416667 
Colonia colonus LSUMZ 11941  trans Choco Ecuador Esmeraldas 0.866667 -78.550000 
Colonia colonus LSUMZ 5945  cis Napo Ecuador Morona-Santiago -2.666600 -78.200000 
Attila spadiceus LSUMZ 29986  trans Choco Ecuador Esmeraldas 1.090861 -78.690611 
Attila spadiceus LSUMZ 1013  cis Inambari Bolivia La Paz -15.290000 -67.590000 
Attila spadiceus LSUMZ 5419  cis Inambari Peru San Marten -6.394444 -76.340278 
Attila spadiceus LSUMZ 5429  cis Inambari Peru San Marten -6.394444 -76.340278 
Attila spadiceus LSUMZ 9353  cis Inambari Bolivia Pando -11.470278 -68.778611 
Attila spadiceus LSUMZ 9506  cis Inambari Bolivia Pando -11.470278 -68.778611 
Attila spadiceus LSUMZ 10613  cis Inambari Peru Ucayali -9.193056 -74.383333 
Attila spadiceus LSUMZ 10639  cis Inambari Peru Ucayali -9.193056 -74.383333 
Attila spadiceus LSUMZ 21231  cis Inambari Bolivia La Paz -15.290000 -67.590000 
Attila spadiceus LSUMZ 42434  cis Inambari Peru Loreto -5.330000 -76.275556 
Attila spadiceus LSUMZ 2843  cis Napo Peru Loreto -3.179269 -72.903511 
Attila spadiceus LSUMZ 2913  cis Napo Peru Loreto -3.179269 -72.903511 
Attila spadiceus LSUMZ 42724  cis Napo Peru Loreto -4.280833 -77.237778 
Attila spadiceus LSUMZ 12532  cis Rondonia Bolivia Santa Cruz -14.810000 -60.810000 
Attila spadiceus LSUMZ 12575  cis Rondonia Bolivia Santa Cruz -14.810000 -60.810000 
Attila spadiceus LSUMZ 12599  cis Rondonia Bolivia Santa Cruz -14.810000 -60.810000 
Attila spadiceus LSUMZ 12619  cis Rondonia Bolivia Santa Cruz -14.810000 -60.810000 
Attila spadiceus LSUMZ 15008  cis Rondonia Bolivia Santa Cruz -13.770000 -61.950000 
Querula purpurata ANSP 4628  trans Choco Ecuador Esmeraldas 0.670000 -78.860000 
Querula purpurata LSUMZ 40407  cis Inambari Peru Loreto -7.586111 -75.933611 
Querula purpurata LSUMZ 103546  cis Inambari Peru Loreto -5.083333 -74.583333 
Querula purpurata LSUMZ 27363  cis Inambari Peru Loreto -7.150000 -75.733333 
Querula purpurata LSUMZ 27975  cis Inambari Peru Loreto -7.133333 -75.683333 
Querula purpurata LSUMZ 42317  cis Inambari Peru Loreto -5.330000 -76.275556 
Querula purpurata LSUMZ 42318  cis Inambari Peru Loreto -5.330000 -76.275556 
Querula purpurata LSUMZ 42632  cis Inambari Peru Loreto -5.313333 -76.275556 
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Querula purpurata LSUMZ 5511  cis Inambari Peru San Marten -6.328889 -76.303611 
Querula purpurata LSUMZ 9495  cis Inambari Bolivia Pando -11.470278 -68.778611 
Querula purpurata LSUMZ 9648  cis Inambari Bolivia Pando -11.470278 -68.778611 
Querula purpurata LSUMZ 4375  cis Napo Peru Loreto -2.819997 -73.273803 
Querula purpurata LSUMZ 2785  cis Napo Peru Loreto -3.179269 -72.903511 
Querula purpurata LSUMZ 2542  cis Napo Peru Loreto -3.179269 -72.903511 
Querula purpurata LSUMZ 2824  cis Napo Peru Loreto -3.179269 -72.903511 
Lepidothrix coronata ANSP 2140  trans Choco Ecuador Esmeraldas 1.030000 -78.580000 
Lepidothrix coronata LSUMZ 10492  cis Inambari Peru Ucayali -8.130000 -74.040000 
Lepidothrix coronata LSUMZ 27832  cis Inambari Peru Loreto -7.130000 -75.670000 
Lepidothrix coronata LSUMZ 31333  cis Inambari Brazil Rondönia -9.250000 -64.400000 
Lepidothrix coronata ANSP 2490  cis Napo Ecuador Morona-Santiago -2.370000 -77.500000 
Lepidothrix coronata ANSP 5859  cis Napo Ecuador Sucumbios 0.250000 -77.250000 
Lepidothrix coronata LSUMZ 2836  cis Napo Peru Loreto -3.270000 -73.080000 
Tityra inquisitor ANSP 4671  trans Choco Ecuador Esmeraldas 0.670000 -78.860000 
Tityra inquisitor ANSP 4632  trans Choco Ecuador Esmeraldas 0.670000 -78.860000 
Tityra inquisitor LSUMZ 40288  cis Inambari Peru Loreto -7.586111 -75.933611 
Tityra inquisitor LSUMZ 9626  cis Inambari Bolivia Pando -11.470278 -68.778611 
Tityra inquisitor LSUMZ 18568  cis Rondonia Bolivia Santa Cruz -14.840000 -60.730000 
Tityra inquisitor LSUMZ 18569  cis Rondonia Bolivia Santa Cruz -14.840000 -60.730000 
Tityra semifasciata ANSP 2377  trans Choco Ecuador Esmeraldas 1.030000 -78.580000 
Tityra semifasciata ANSP 2326  trans Choco Ecuador Esmeraldas 1.030000 -78.580000 
Tityra semifasciata LSUMZ 12007  trans Choco Ecuador Esmeraldas 0.866667 -78.550000 
Tityra semifasciata LSUMZ 10608  cis Inambari Peru Ucayali -9.193056 -74.383333 
Tityra semifasciata LSUMZ 40861  cis Inambari Peru Loreto -7.586167 -75.900333 
Tityra semifasciata LSUMZ 1990  cis Inambari Peru Pasco -10.410833 -74.964722 
Tityra semifasciata LSUMZ 22812  cis Inambari Bolivia La Paz -15.188056 -68.255000 
Tityra semifasciata LSUMZ 42582  cis Inambari Peru Loreto -5.313333 -76.275556 
Tityra semifasciata LSUMZ 9434  cis Inambari Bolivia Pando -11.470278 -68.778611 
Tityra semifasciata ANSP 1546  cis Napo Ecuador Morona-Santiago -3.400000 -78.550000 
Tityra semifasciata LSUMZ 14748  cis Rondonia Bolivia Santa Cruz -14.486667 -60.675278 
Tityra semifasciata LSUMZ 18171  cis Rondonia Bolivia Santa Cruz -14.833333 -60.416667 
Tityra semifasciata LSUMZ 18275  cis Rondonia Bolivia Santa Cruz -14.833333 -60.416667 
Tityra semifasciata LSUMZ 38928  cis Rondonia Bolivia Cochabamba -17.146389 -65.779444 
Schiffornis turdina LSUMZ 11889  trans Choco Ecuador Esmeraldas 0.866667 -78.550000 
Schiffornis turdina LSUMZ 6028  cis Napo Ecuador Morona-Santiago -2.750000 -78.000000 
Hylophilus ochraceiceps ANSP 2242  trans Choco Ecuador Esmeraldas 1.030000 -78.580000 
Hylophilus ochraceiceps LSUMZ 4952  cis Inambari Peru Loreto -3.498869 -72.716158 
Hylophilus ochraceiceps LSUMZ 11173  cis Inambari Peru Ucayali -8.090833 -74.444722 
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Hylophilus ochraceiceps LSUMZ 106764  cis Inambari Bolivia Beni -14.250000 -67.600000 
Hylophilus ochraceiceps LSUMZ 5480  cis Inambari Peru San Marten -6.328889 -76.303611 
Hylophilus ochraceiceps LSUMZ 9357  cis Inambari Bolivia Pando -11.470278 -68.778611 
Hylophilus ochraceiceps ANSP 4880  cis Napo Ecuador Napo -0.660000 -77.316600 
Hylophilus ochraceiceps LSUMZ 7010  cis Napo Peru Loreto -3.313722 -72.519992 
Hylophilus ochraceiceps LSUMZ 2534  cis Napo Peru Loreto -3.179269 -72.903511 
Hylophilus ochraceiceps LSUMZ 42609  cis Napo Peru Loreto -4.280833 -77.237778 
Hylophilus ochraceiceps LSUMZ 42694  cis Napo Peru Loreto -4.280833 -77.237778 
Hylophilus ochraceiceps LSUMZ 42701  cis Napo Peru Loreto -4.280833 -77.237778 
Hylophilus ochraceiceps LSUMZ 42765  cis Napo Peru Loreto -4.280833 -77.237778 
Hylophilus ochraceiceps LSUMZ 36633  cis Rondonia Brazil Rondönia -10.760000 -64.750000 
Hylophilus ochraceiceps LSUMZ 36752  cis Rondonia Brazil Rondönia -10.760000 -64.750000 
Microcerculus marginatus ANSP 2408  trans Choco Ecuador Esmeraldas 1.030000 -78.580000 
Microcerculus marginatus ANSP 2248  trans Choco Ecuador Esmeraldas 1.030000 -78.580000 
Microcerculus marginatus LSUMZ 11839  trans Choco Ecuador Esmeraldas 0.866667 -78.550000 
Microcerculus marginatus LSUMZ 10697  cis Inambari Peru Ucayali -9.193056 -74.383333 
Microcerculus marginatus LSUMZ 11053  cis Inambari Peru Ucayali -8.090833 -74.444722 
Microcerculus marginatus LSUMZ 4734  cis Inambari Peru Loreto -3.498869 -72.716158 
Microcerculus marginatus LSUMZ 9146  cis Inambari Bolivia Pando -11.470278 -68.778611 
Microcerculus marginatus ANSP 2518  cis Napo Ecuador Morona-Santiago -2.420000 -77.520000 
Microcerculus marginatus ANSP 1556  cis Napo Ecuador Morona-Santiago -3.400000 -78.550000 
Microcerculus marginatus LSUMZ 2640  cis Napo Peru Loreto -3.179269 -72.903511 
Microcerculus marginatus LSUMZ 2513  cis Napo Peru Loreto -3.179269 -72.903511 
Microcerculus marginatus LSUMZ 42842  cis Napo Peru Loreto -4.280833 -77.237778 
Microcerculus marginatus LSUMZ 4459  cis Napo Peru Loreto -2.819997 -73.273803 
Microcerculus marginatus LSUMZ 7077  cis Napo Peru Loreto -3.313722 -72.519992 
Microcerculus marginatus FMNH JH-014 (AY612516) cis Rondonia Brazil Mato Grosso -9.904000 -55.881000 
Microcerculus marginatus FMNH JH-260 (AY612515) cis Rondonia Brazil Mato Grosso -9.904000 -55.881000 
Microcerculus marginatus FMNH JH-124 (AY612514) cis Rondonia Brazil Mato Grosso -9.904000 -55.881000 
Microcerculus marginatus FMNH JH-052 (AY612513) cis Rondonia Brazil Mato Grosso -9.904000 -55.881000 
Microcerculus marginatus FMNH JH-395 (AY612512) cis Rondonia Brazil Mato Grosso -9.904000 -55.881000 
Microcerculus marginatus FMNH JH-376 (AY612511) cis Rondonia Brazil Mato Grosso -9.904000 -55.881000 
Microcerculus marginatus LSUMZ 106784  cis Rondonia Bolivia Beni -15.500000 -67.116600 
Microcerculus marginatus LSUMZ 1092  cis Rondonia Bolivia La Paz -15.290000 -67.590000 
Henicorhina leucosticta ANSP 2396  trans Choco Ecuador Esmeraldas 1.030000 -78.580000 
Henicorhina leucosticta ANSP 2426  trans Choco Ecuador Esmeraldas 1.030000 -78.580000 
Henicorhina leucosticta LSUMZ 12005  trans Choco Ecuador Esmeraldas 0.866667 -78.550000 
Henicorhina leucosticta LSUMZ 11738  trans Choco Ecuador Esmeraldas 0.866667 -78.550000 
Henicorhina leucosticta LSUMZ 11868  trans Choco Ecuador Esmeraldas 0.866667 -78.550000 
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Henicorhina leucosticta LSUMZ 5391  cis Inambari Peru San Marten -6.394444 -76.340278 
Henicorhina leucosticta ANSP 2482  cis Napo Ecuador Morona-Santiago -2.420000 -77.520000 
Henicorhina leucosticta ANSP 2630  cis Napo Ecuador Morona-Santiago -2.420000 -77.520000 
Henicorhina leucosticta ANSP 2653  cis Napo Ecuador Morona-Santiago -2.420000 -77.520000 
Henicorhina leucosticta LSUMZ 42803  cis Napo Peru Loreto -4.280833 -77.237778 
Henicorhina leucosticta LSUMZ 43060  cis Choco Peru Loreto -4.280833 -77.237778 
Henicorhina leucosticta LSUMZ 6019  cis Inambari Ecuador Morona-Santiago -2.750000 -78.000000 
Microbates cinereiventris ANSP 2283  trans Napo Ecuador Esmeraldas 1.030000 -78.580000 
Microbates cinereiventris LSUMZ 11812  trans Rondonia Ecuador Esmeraldas 0.866667 -78.550000 
Microbates cinereiventris LSUMZ 11750  trans Rondonia Ecuador Esmeraldas 0.866667 -78.550000 
Microbates cinereiventris ANSP 2589  cis Rondonia Ecuador Morona-Santiago -2.420000 -77.520000 
Tangara gyrola ANSP 4337  trans Choco Ecuador Esmeraldas 0.660000 -79.440000 
Tangara gyrola LSUMZ 34886  trans Inambari Ecuador Pichincha 0.300000 -78.900000 
Tangara gyrola LSUMZ 34861  trans Napo Ecuador Pichincha 0.150000 -79.200000 
Tangara gyrola LSUMZ 34869  trans Napo Ecuador Pichincha 0.216667 -79.033333 
Tangara gyrola LSUMZ 34911  trans Rondonia Ecuador Pichincha 0.333333 -79.016667 
Tangara gyrola LSUMZ 22850  cis Rondonia Bolivia La Paz -15.188056 -68.255000 
Tangara gyrola LSUMZ 11294  cis Choco Peru Ucayali -8.090833 -74.444722 
Tangara gyrola LSUMZ 11150  cis Inambari Peru Ucayali -8.090833 -74.444722 
Tangara gyrola LSUMZ 22706  cis Napo Bolivia La Paz -15.188056 -68.255000 
Tangara gyrola LSUMZ 27563  cis Choco Peru Loreto -7.133333 -75.683333 
Tangara gyrola LSUMZ 28002  cis Choco Peru Loreto -7.083333 -75.650000 
Tangara gyrola LSUMZ 28004  cis Napo Peru Loreto -7.083333 -75.650000 
Tangara gyrola LSUMZ 5397  cis Napo Peru San Marten -6.394444 -76.340278 
Tangara gyrola ANSP 2677  cis Napo Ecuador Morona-Santiago -2.420000 -77.520000 
Tangara gyrola LSUMZ 4258  cis Choco Peru Loreto -2.819997 -73.273803 
Tangara gyrola LSUMZ 6838  cis Inambari Peru Loreto -3.313722 -72.519992 
Tangara gyrola LSUMZ 34925  cis Inambari Ecuador Napo -0.685300 -77.865600 
Tangara gyrola LSUMZ 14862  cis Rondonia Bolivia Santa Cruz -14.486667 -60.675278 
Tangara gyrola LSUMZ 12295  cis Rondonia Bolivia Santa Cruz -14.270000 -60.990000 
Tangara gyrola LSUMZ 12604  cis Choco Bolivia Santa Cruz -14.810000 -60.810000 
Tangara gyrola LSUMZ 13020  cis Choco Bolivia Santa Cruz -13.566600 -61.233300 
Tangara gyrola LSUMZ 6793  cis Inambari Bolivia Beni -15.500000 -67.116600 
Tangara gyrola LSUMZ 936  cis Choco Bolivia La Paz -15.290000 -67.590000 
Tangara cyanicollis LSUMZ 34904  trans Inambari Ecuador Pichincha 0.150000 -79.200000 
Tangara cyanicollis LSUMZ 35010  cis Rondonia Ecuador Pichincha 0.000000 -78.900000 
Tangara cyanicollis LSUMZ 5613  cis Rondonia Peru San Marten -6.050000 -76.733333 
Tangara cyanicollis LSUMZ 22724  cis Rondonia Bolivia La Paz -15.188056 -68.255000 
Tangara cyanicollis LSUMZ 34824  cis Rondonia Peru Cajamarca -4.991667 -78.905000 
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Tangara cyanicollis LSUMZ 15351  cis Rondonia Bolivia Santa Cruz -14.486667 -60.675278 
Tangara cyanicollis LSUMZ 14423  cis Rondonia Bolivia Santa Cruz -14.486667 -60.675278 
Tangara cyanicollis LSUMZ 15097  cis Choco Bolivia Santa Cruz -13.770000 -61.950000 
Tangara cyanicollis LSUMZ 18102  cis Inambari Bolivia Santa Cruz -14.833333 -60.416667 
Tersina viridis LSUMZ 11788  trans Inambari Ecuador Esmeraldas 0.866667 -78.550000 
Tersina viridis LSUMZ 9680  cis Inambari Bolivia Pando -11.470278 -68.778611 
Tersina viridis LSUMZ 5527  cis Inambari Peru San Marten -6.050000 -76.733333 
Tersina viridis LSUMZ 9132  cis Rondonia Bolivia Pando -11.470278 -68.778611 
Tersina viridis LSUMZ 9640  cis Choco Bolivia Pando -11.470278 -68.778611 
Tersina viridis LSUMZ 944  cis Choco Bolivia La Paz -15.290000 -67.590000 
Tersina viridis LSUMZ 27997  cis Inambari Peru Loreto -7.133333 -75.683333 
Tersina viridis LSUMZ 2914  cis Inambari Peru Loreto -3.179269 -72.903511 
Tersina viridis LSUMZ 2632  cis Napo Peru Loreto -3.179269 -72.903511 
Tersina viridis LSUMZ 14819  cis Choco Bolivia Santa Cruz -13.770000 -61.950000 
Tersina viridis LSUMZ 14912  cis Choco Bolivia Santa Cruz -13.770000 -61.950000 
Tersina viridis LSUMZ 12855  cis Inambari Bolivia Santa Cruz -13.566600 -61.233300 
Tersina viridis LSUMZ 37911  cis Inambari Bolivia Santa Cruz -17.200000 -59.333333 
Tersina viridis LSUMZ 37912  cis Inambari Bolivia Santa Cruz -17.200000 -59.333333 
Cyanerpes caeruleus LSUMZ 11825  trans Inambari Ecuador Esmeraldas 0.866667 -78.550000 
Cyanerpes caeruleus LSUMZ 5404  cis Napo Peru San Marten -6.394444 -76.340278 
Cyanerpes caeruleus LSUMZ 2730  cis Napo Peru Loreto -3.179269 -72.903511 
Cyanerpes caeruleus LSUMZ 12906  cis Rondonia Bolivia Santa Cruz -13.566600 -61.233300 
Chlorophanes spiza ANSP 2453  trans Choco Ecuador Esmeraldas 1.030000 -78.580000 
Chlorophanes spiza LSUMZ 5431  cis Choco Peru San Marten -6.394444 -76.340278 
Chlorophanes spiza LSUMZ 9048  cis Inambari Bolivia Pando -11.470278 -68.778611 
Chlorophanes spiza LSUMZ 22731  cis Inambari Bolivia La Paz -15.188056 -68.255000 
Chlorophanes spiza LSUMZ 27666  cis Inambari Peru Loreto -7.133333 -75.683333 
Chlorophanes spiza LSUMZ 28014  cis Inambari Peru Loreto -7.083333 -75.650000 
Chlorophanes spiza LSUMZ 42292  cis Inambari Peru Loreto -5.330000 -76.275556 
Chlorophanes spiza LSUMZ 42349  cis Inambari Peru Loreto -5.330000 -76.275556 
Chlorophanes spiza LSUMZ 42539  cis Inambari Peru Loreto -5.313333 -76.275556 
Chlorophanes spiza LSUMZ 2727  cis Inambari Peru Loreto -3.179269 -72.903511 
Chlorophanes spiza LSUMZ 2783  cis Inambari Peru Loreto -3.179269 -72.903511 
Chlorophanes spiza LSUMZ 2838  cis Inambari Peru Loreto -3.179269 -72.903511 
Chlorophanes spiza LSUMZ 2861  cis Inambari Peru Loreto -3.179269 -72.903511 
Chlorophanes spiza LSUMZ 12296  cis Inambari Bolivia Santa Cruz -14.270000 -60.990000 
Chlorophanes spiza LSUMZ 12339  cis Inambari Bolivia Santa Cruz -14.270000 -60.990000 
Chlorophanes spiza LSUMZ 12486  cis Inambari Bolivia Santa Cruz -14.810000 -60.810000 
Arremon aurantiirostris ANSP 3148  trans Inambari Ecuador Manabi -1.583333 -80.666667 
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Arremon aurantiirostris ANSP 3508  trans Napo Ecuador Azuay -2.500000 -79.416667 
Arremon aurantiirostris ANSP 3627  trans Napo Ecuador Azuay -2.500000 -79.416667 
Arremon aurantiirostris LSUMZ 12044  trans Napo Ecuador Pichincha 0.033300 -78.800000 
Arremon aurantiirostris LSUMZ 5495  cis Napo Peru San Marten -6.328889 -76.303611 
Arremon aurantiirostris ANSP 4857  cis Napo Ecuador Napo -0.660000 -77.316600 
Arremon aurantiirostris LSUMZ 5983  cis Rondonia Ecuador Morona-Santiago -2.750000 -78.000000 
Arremon aurantiirostris LSUMZ 5994  cis Rondonia Ecuador Morona-Santiago -2.750000 -78.000000 
Saltator grossus ANSP 2398  trans Rondonia Ecuador Esmeraldas 1.030000 -78.580000 
Saltator grossus ANSP 2457  trans Rondonia Ecuador Esmeraldas 1.030000 -78.580000 
Saltator grossus LSUMZ 11942  trans Rondonia Ecuador Esmeraldas 0.866667 -78.550000 
Saltator grossus LSUMZ 11943  trans Rondonia Ecuador Esmeraldas 0.866667 -78.550000 
Saltator grossus LSUMZ 11197  cis Rondonia Peru Ucayali -8.090833 -74.444722 
Saltator grossus LSUMZ 11169  cis Rondonia Peru Ucayali -8.090833 -74.444722 
Saltator grossus LSUMZ 5439  cis Rondonia Peru San Marten -6.394444 -76.340278 
Saltator grossus LSUMZ 9662  trans Rondonia Bolivia Pando -11.470278 -68.778611 
Saltator grossus LSUMZ 2873  cis Choco Peru Loreto -3.179269 -72.903511 
Saltator grossus LSUMZ 18432  cis Choco Bolivia Santa Cruz -14.833333 -60.416667 
Saltator grossus LSUMZ 35254  cis Choco Brazil Mato Grosso -9.830833 -56.092500 
Saltator grossus LSUMZ 948  cis Inambari Bolivia La Paz -15.290000 -67.590000 
Phaeothlypis fulvicauda LSUMZ 11873 (AY340210) trans Inambari Ecuador Esmeraldas 0.866667 -78.550000 
Phaeothlypis rivularis LSUMZ 1146 (AY340209) cis Inambari Bolivia La Paz -15.290000 -67.590000 
Phaeothlypis rivularis LSUMZ 2050 (AY340215) cis Inambari Peru Pasco -10.410833 -74.964722 
Phaeothlypis fulvicauda ANSP 1527 (AY340211) cis Choco Ecuador Morona-Santiago -3.400000 -78.550000 
Phaeothlypis rivularis LSUMZ 7061 (AY340216) cis Choco Peru Loreto -3.142222 -72.721111 
Phaeothlypis fulvicauda LSUMZ 42908  cis Choco Peru Loreto -4.280833 -77.237778 
Phaeothlypis fulvicauda LSUMZ 36701  cis Inambari Brazil Rondönia -10.760000 -64.750000 
Psarocolius angustifrons LSUMZ 7776 (AF472365) trans Inambari Ecuador Pichincha 0.030000 -78.810000 
Psarocolius angustifrons LSUMZ 7790  trans Inambari Ecuador Pichincha 0.030000 -78.810000 
Psarocolius angustifrons FMNH 324068 (AF472362) cis Inambari Peru Madres De Dios -12.877300 -71.386500 
Psarocolius angustifrons LSUMZ 32967 (AF472363) cis Inambari Peru Cajamarca -5.383333 -78.771667 
Psarocolius angustifrons LSUMZ 7273 (AF472364) cis Napo Peru Loreto -3.386197 -72.632553 
Psarocolius angustifrons LSUMZ 7241  cis Napo Peru Loreto -3.386197 -72.632553 
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Sample 
ID Collection Tissue 

Number 
Side of 
Andes 

Area of Endemism  
(da Silva 2005) Country State/Province/ 

Department Latitude Longitude 

1 FIELD 393900 trans North CA & W Pan Mexico Veracruz 18.362000 -94.838000 
2 FIELD 393901 trans North CA & W Pan Mexico Veracruz 18.362000 -94.838000 
3 FIELD 343240 trans North CA & W Pan Mexico Veracruz 18.000000 -94.900000 
4 FIELD 343241 trans North CA & W Pan Mexico Veracruz 18.000000 -94.900000 
5 MZFC CHIMA027 trans North CA & W Pan Mexico Oaxaca 17.066819 -94.118333 
6 MZFC CHIMA107 trans North CA & W Pan Mexico Oaxaca 17.066819 -94.118333 
7 MZFC CHIMA175 trans North CA & W Pan Mexico Oaxaca 17.066667 -94.583333 
8 MZFC OMVP562 trans North CA & W Pan Mexico Oaxaca 17.006667 -94.689444 
9 MZFC YACH354 trans North CA & W Pan Mexico Chiapas 16.905833 -90.982778 
10 MZFC YACH072 trans North CA & W Pan Mexico Chiapas 16.901667 -90.973333 
11 MZFC YACH238 trans North CA & W Pan Mexico Chiapas 16.901667 -90.973333 
12 MZFC YACH400 trans North CA & W Pan Mexico Chiapas 16.901667 -90.973333 
13 LSUMZ 3774 trans North CA & W Pan Belize Toledo 16.290000 -89.020000 
14 LSUMZ 8766 trans North CA & W Pan Belize Toledo 16.290000 -89.020000 
15 MZFC YACH368 trans North CA & W Pan Mexico Chiapas 16.084167 -90.976667 
16 BARR 4376 trans North CA & W Pan Nicaragua  13.701667 -84.851669 
17 LSUMZ 16279 trans North CA & W Pan Costa Rica Limon 10.208333 -83.880556 
18 LSUMZ 51424 trans North CA & W Pan Panama Bocas del Toro 8.791389 -82.209844 
19 LSUMZ 26528 trans Choco Panama Colon 9.250833 -79.781111 
20 LSUMZ 26537 trans Choco Panama Colon 9.250833 -79.781111 
21 BARR 15332 trans Choco Panama Panama 9.237500 -79.412333 
22 LSUMZ 2241 trans Choco Panama Darien 7.756000 -77.684000 
23 ANSP 4306 trans Choco Ecuador Esmeraldas 0.660000 -79.440000 
24 ANSP 3436 trans Choco Ecuador Manabi -1.583333 -80.666667 
25 AMNH 14519 cis Imeri Brazil Amazonas -0.416667 -62.933333 
26 AMNH 14626 cis Imeri Brazil Amazonas -0.416667 -62.933333 
27 FIELD 457890 cis Imeri Brazil Amazonas -1.936700 -66.605000 
28 ANSP 5854 cis Napo Ecuador Sucumbios 0.250000 -77.250000 
29 ANSP 5956 cis Napo Ecuador Sucumbios 0.250000 -77.250000 
30 LSUMZ 4159 cis Napo Peru Loreto -2.819997 -73.273803 
31 LSUMZ 4234 cis Napo Peru Loreto -2.819997 -73.273803 
32 LSUMZ 4264 cis Napo Peru Loreto -2.819997 -73.273803 
33 LSUMZ 4353 cis Napo Peru Loreto -2.819997 -73.273803 
34 USNM 14589 cis Guiana Guyana  8.250000 -59.733333 
35 USNM 9415 cis Guiana Guyana Northwest 7.366667 -60.483333 
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36 USNM 9513 cis Guiana Guyana Northwest 7.366667 -60.483333 
37 USNM 4185 cis Guiana Guyana Berbice 5.666667 -57.883333 
38 USNM 4187 cis Guiana Guyana Berbice 5.666667 -57.883333 
39 USNM 14298 cis Guiana Guyana  5.516667 -60.733333 
40 AMNH 2950 cis Guiana Venezuela Bolivar 5.500000 -63.500000 
41 ANSP 5716 cis Guiana Guyana  5.283330 -58.633330 
42 LSUMZ 48382 cis Guiana Guyana  4.932778 -59.893611 
43 LSUMZ 48396 cis Guiana Guyana  4.932778 -59.893611 
44 LSUMZ 48411 cis Guiana Guyana  4.932778 -59.893611 
45 FIELD 389199 cis Guiana Brazil Roraima 2.540500 -60.710800 
46 USNM 12563 cis Guiana Guyana  2.200000 -59.366667 
47 USNM 11390 cis Guiana Guyana  1.650000 -58.616667 
48 USNM 11935 cis Guiana Guyana  1.650000 -58.616667 
49 USNM 11630 cis Guiana Guyana  1.583333 -58.633333 
50 FIELD 391345 cis Guiana Brazil Amapa 1.429200 -52.279700 
51 USNM 10423 cis Guiana Guyana  1.416667 -58.950000 
52 AMNH 12394 cis Guiana Venezuela Amazonas 0.916667 -66.166667 
53 AMNH 12407 cis Guiana Venezuela Amazonas 0.916667 -66.166667 
54 AMNH 12688 cis Guiana Venezuela Amazonas 0.834167 -66.166667 
55 LSUMZ 5123 cis Inambari Peru Loreto -3.552193 -72.749257 
56 LSUMZ 46009 cis Inambari Peru San Marten -6.733333 -77.383333 
57 LSUMZ 46133 cis Inambari Peru San Marten -6.733333 -77.383333 
58 LSUMZ 40554 cis Inambari Peru Loreto -7.561111 -75.916111 
59 LSUMZ 39944 cis Inambari Peru Loreto -7.566667 -75.891944 
60 LSUMZ 40504 cis Inambari Peru Loreto -7.594444 -75.916111 
61 LSUMZ 11048 cis Inambari Peru Ucayali -8.090833 -74.444722 
62 LSUMZ 11164 cis Inambari Peru Ucayali -8.090833 -74.444722 
63 LSUMZ 11187 cis Inambari Peru Ucayali -8.090833 -74.444722 
64 LSUMZ 11244 cis Inambari Peru Ucayali -8.090833 -74.444722 
65 LSUMZ 31359 cis Inambari Brazil Rondonia -8.942933 -64.084047 
66 LSUMZ 10514 cis Inambari Peru Ucayali -9.193056 -74.383333 
67 LSUMZ 10655 cis Inambari Peru Ucayali -9.193056 -74.383333 
68 LSUMZ 10864 cis Inambari Peru Ucayali -9.193056 -74.383333 
69 LSUMZ 2027 cis Inambari Peru Pasco -10.410833 -74.964722 
70 LSUMZ 2063 cis Inambari Peru Pasco -10.410833 -74.964722 
71 LSUMZ 8921 cis Inambari Bolivia Pando -11.470278 -68.778611 
72 LSUMZ 8952 cis Inambari Bolivia Pando -11.470278 -68.778611 
73 LSUMZ 9255 cis Inambari Bolivia Pando -11.470278 -68.778611 
74 FIELD 397967 cis Inambari Peru Madre de Dios -12.666944 -71.270556 
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75 FIELD 433309 cis Inambari Peru Madre de Dios -12.766667 -71.383333 
76 FIELD 433310 cis Inambari Peru Madre de Dios -12.766667 -71.383333 
77 FIELD 433308 cis Inambari Peru Cuzco -13.016667 -71.483333 
78 FIELD 433311 cis Inambari Peru Cuzco -13.016667 -71.483333 
79 FIELD 433312 cis Inambari Peru Cuzco -13.016667 -71.483333 
80 FIELD 433313 cis Inambari Peru Cuzco -13.016667 -71.483333 
81 FIELD 391104 cis Inambari Bolivia La Paz -13.750000 -68.150000 
82 FIELD 391105 cis Inambari Bolivia La Paz -13.750000 -68.150000 
83 LSUMZ 22613 cis Inambari Bolivia La Paz -15.188056 -68.255000 
84 LSUMZ 22633 cis Inambari Bolivia La Paz -15.188056 -68.255000 
85 LSUMZ 22733 cis Inambari Bolivia La Paz -15.188056 -68.255000 
86 LSUMZ 22841 cis Inambari Bolivia La Paz -15.188056 -68.255000 
87 LSUMZ 36699 cis Rondonia Brazil Rondonia -10.760000 -64.750000 
88 LSUMZ 15160 cis Rondonia Bolivia Santa Cruz -13.770000 -61.950000 
89 LSUMZ 12375 cis Rondonia Bolivia Santa Cruz -14.270000 -60.990000 
90 LSUMZ 13829 cis Rondonia Bolivia Santa Cruz -14.486667 -60.675278 
91 LSUMZ 14484 cis Rondonia Bolivia Santa Cruz -14.486667 -60.675278 
92 LSUMZ 14488 cis Rondonia Bolivia Santa Cruz -14.486667 -60.675278 
93 LSUMZ 14655 cis Rondonia Bolivia Santa Cruz -14.486667 -60.675278 
94 LSUMZ 12479 cis Rondonia Bolivia Santa Cruz -14.810000 -60.810000 
95 LSUMZ 12537 cis Rondonia Bolivia Santa Cruz -14.810000 -60.810000 
96 LSUMZ 18161 cis Rondonia Bolivia Santa Cruz -14.833333 -60.416667 
97 LSUMZ 18197 cis Rondonia Bolivia Santa Cruz -14.833333 -60.416667 
98 LSUMZ 18225 cis Rondonia Bolivia Santa Cruz -14.833333 -60.416667 
99 LSUMZ 18244 cis Rondonia Bolivia Santa Cruz -14.833333 -60.416667 
100 LSUMZ 18444 cis Rondonia Bolivia Santa Cruz -14.833333 -60.416667 
101 LSUMZ 18522 cis Rondonia Bolivia Santa Cruz -14.840000 -60.730000 
102 LSUMZ 18550 cis Rondonia Bolivia Santa Cruz -14.840000 -60.730000 
103 LSUMZ 6785 cis Rondonia Bolivia Beni -15.447222 -67.166111 

 



 118 

APPENDIX D:  LIST OF INDIVIDUAL SAMPLES OF XENOPS MINUTUS 
 

Sample 
ID Collection Tissue 

Number 
Side of 
Andes 

Area of Endemism  
(da Silva 2005) Country State/Province/ 

Department Latitude Longitude 

1 MZFC 1901 trans North CA & W Pan Mexico Campeche 18.592778 -90.256111 
2 MZFC 1966 trans North CA & W Pan Mexico Campeche 18.592778 -90.256111 
3 MZFC 2044 trans North CA & W Pan Mexico Campeche 18.592778 -90.256111 
4 MZFC 2166 trans North CA & W Pan Mexico Campeche 18.592778 -90.256111 
5 KU 1901 trans North CA & W Pan Mexico Campeche 18.446043 -90.270887 
6 MZFC 238 trans North CA & W Pan Mexico Oaxaca 17.066667 -94.583333 
7 MZFC 480 trans North CA & W Pan Mexico Oaxaca 17.051667 -94.673333 
8 MZFC 51 trans North CA & W Pan Mexico Chiapas 16.901667 -90.973333 
9 MZFC 68 trans North CA & W Pan Mexico Chiapas 16.901667 -90.973333 
10 BARR 8686 trans North CA & W Pan Honduras Atlantida 15.716667 -86.866667 
11 LSUMZ 60935 trans North CA & W Pan Honduras Cortés 14.872833 -87.905000 
12 LSUMZ 60945 trans North CA & W Pan Honduras Cortés 14.872833 -87.905000 
13 LSUMZ 35767 trans North CA & W Pan Costa Rica Cartago 9.783333 -83.750000 
14 USNM 1283 trans North CA & W Pan Panama Bocas Del Toro 9.021536 -81.762039 
15 USNM 1302 trans North CA & W Pan Panama Bocas Del Toro 9.021536 -81.762039 
16 USNM 1400 trans North CA & W Pan Panama Bocas Del Toro 9.021536 -81.762039 
17 ANSP 7207 trans North CA & W Pan Panama Veraguas 7.383333 -80.883333 
18 BARR 16144 trans North CA & W Pan Panama Veraguas 7.241667 -80.905667 
19 LSUMZ 28753 trans Choco Panama Colon 9.280000 -79.710000 
20 BARR 15267 trans Choco Panama Panama 9.250000 -79.583333 
21 LSUMZ 26497 trans Choco Panama Colon 9.190000 -79.790000 
22 LSUMZ 26932 trans Choco Panama Panama 9.058333 -79.650833 
23 LSUMZ 28628 trans Choco Panama Panama 9.030000 -79.700000 
24 LSUMZ 2209 trans Choco Panama Darien 7.756000 -77.684000 
25 ANSP 2227 trans Choco Ecuador Esmeraldas 1.030000 -78.580000 
26 ANSP 2315 trans Choco Ecuador Esmeraldas 1.030000 -78.580000 
27 LSUMZ 11948 trans Choco Ecuador Esmeraldas 0.866667 -78.550000 
28 ANSP 4331 trans Choco Ecuador Esmeraldas 0.660000 -79.440000 
29 ANSP 3542 trans Choco Ecuador Azuay -2.500000 -79.416667 
30 AMNH 14435 cis Imeri Brazil Amazonas -0.783333 -63.166667 
31 FIELD 456907 cis Imeri Brazil Amazonas -1.730000 -65.879200 
32 AMNH 14231 cis Imeri Brazil Amazonas -2.850000 -60.866667 
33 AMNH 14232 cis Imeri Brazil Amazonas -2.850000 -60.866667 
34 FIELD 456908 cis Napo Brazil Amazonas -2.049700 -67.263100 
35 FIELD 456909 cis Napo Brazil Amazonas -2.049700 -67.263100 
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36 LSUMZ 4244 cis Napo Peru Loreto -2.916670 -73.083330 
37 LSUMZ 4328 cis Napo Peru Loreto -2.916670 -73.083330 
38 LSUMZ 2571 cis Napo Peru Loreto -3.266670 -72.933333 
39 LSUMZ 2754 cis Napo Peru Loreto -3.266670 -72.933333 
40 ANSP 1484 cis Napo Ecuador Morona-Santiago -3.400000 -78.550000 
41 LSUMZ 6862 cis Napo Peru Loreto -3.416670 -72.583330 
42 LSUMZ 7127 cis Napo Peru Loreto -3.416670 -72.583330 
43 LSUMZ 42756 cis Napo Peru Loreto -4.280833 -77.237778 
44 LSUMZ 42810 cis Napo Peru Loreto -4.280833 -77.237778 
45 LSUMZ 5442 cis Napo Peru San Marten -6.394444 -76.340278 
46 USNM 14628 cis Guiana Guyana  8.250000 -59.733333 
47 AMNH 11942 cis Guiana Venezuela Bolivar 7.383333 -61.216667 
48 USNM 9164 cis Guiana Guyana Northwest 7.366667 -60.483333 
49 USNM 9333 cis Guiana Guyana Northwest 7.366667 -60.483333 
50 USNM 14183 cis Guiana Guyana  6.400000 -58.766667 
51 USNM 14260 cis Guiana Guyana  5.933333 -58.233333 
52 USNM 4266 cis Guiana Guyana Berbice 5.666667 -57.883333 
53 USNM 4331 cis Guiana Guyana Berbice 5.666667 -57.883333 
54 USNM 5132 cis Guiana Guyana Essequibo 5.500000 -60.783333 
55 USNM 15759 cis Guiana Guyana  5.283333 -60.750000 
56 USNM 14525 cis Guiana Guyana  5.200000 -57.283333 
57 LSUMZ 48433 cis Guiana Guyana  4.932778 -59.893611 
58 LSUMZ 48452 cis Guiana Guyana  4.932778 -59.893611 
59 LSUMZ 48478 cis Guiana Guyana  4.932778 -59.893611 
60 KU 1225 cis Guiana Guyana  4.666667 -58.666667 
61 KU 1276 cis Guiana Guyana  4.666667 -58.666667 
62 ANSP 7407 cis Guiana Guyana Potaro-Siparuni 4.333333 -58.850000 
63 LSUMZ 45809 cis Guiana Suriname  3.731623 -55.983179 
64 USNM 12223 cis Guiana Guyana  2.366667 -59.450000 
65 USNM 12772 cis Guiana Guyana  2.200000 -59.366667 
66 AMNH 8845 cis Guiana Venezuela Amazonas 1.895400 -65.045600 
67 FIELD 391346 cis Guiana Brazil Amapa 1.821313 -53.650755 
68 USNM 11810 cis Guiana Guyana  1.583333 -58.633333 
69 USNM 10412 cis Guiana Guyana  1.416667 -58.950000 
70 USNM 10887 cis Guiana Guyana North West 1.383333 -58.933333 
71 AMNH 12699 cis Guiana Venezuela Amazonas 0.834167 -66.166667 
72 AMNH 12700 cis Guiana Venezuela Amazonas 0.834167 -66.166667 
73 LSUMZ 4706 cis Inambari Peru Loreto -3.552193 -72.749257 
74 LSUMZ 4746 cis Inambari Peru Loreto -3.552193 -72.749257 
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75 LSUMZ 11186 cis Inambari Peru Ucayali -8.090833 -74.444722 
76 LSUMZ 11276 cis Inambari Peru Ucayali -8.090833 -74.444722 
77 LSUMZ 10510 cis Inambari Peru Ucayali -9.193056 -74.383333 
78 LSUMZ 10854 cis Inambari Peru Ucayali -9.193056 -74.383333 
79 FIELD 395561 cis Inambari Brazil Acre -10.248282 -69.377749 
80 LSUMZ 8988 cis Inambari Bolivia Pando -11.470278 -68.778611 
81 LSUMZ 9026 cis Inambari Bolivia Pando -11.470278 -68.778611 
82 LSUMZ 9452 cis Inambari Bolivia Pando -11.470278 -68.778611 
83 FIELD 433363 cis Inambari Peru Madre de Dios -12.766667 -71.383333 
84 FIELD 433365 cis Inambari Peru Madre de Dios -12.766667 -71.383333 
85 FIELD 321726 cis Inambari Peru Madre de Dios -12.877300 -71.386500 
86 FIELD 433364 cis Inambari Peru Cuzco -13.016667 -71.483333 
87 FIELD 391107 cis Inambari Bolivia La Paz -13.750000 -68.150000 
88 FIELD 391110 cis Inambari Bolivia La Paz -13.750000 -68.150000 
89 LSUMZ 6761 cis Inambari Bolivia Beni -14.250000 -67.600000 
90 LSUMZ 22778 cis Inambari Bolivia La Paz -15.188056 -68.255000 
91 SAOPAULO 91 cis Rondonia Brazil Mato Grosso do Norte -9.179311 -60.630630 
92 FIELD 389826 cis Rondonia Brazil Rondonia -9.733333 -61.883333 
93 LSUMZ 36696 cis Rondonia Brazil Rondönia -10.760000 -64.750000 
94 LSUMZ 36719 cis Rondonia Brazil Rondönia -10.760000 -64.750000 
95 LSUMZ 36779 cis Rondonia Brazil Rondönia -10.760000 -64.750000 
96 FIELD 391109 cis Rondonia Bolivia El Beni -11.009163 -65.995241 
97 LSUMZ 15114 cis Rondonia Bolivia Santa Cruz -13.770000 -61.950000 
98 LSUMZ 12264 cis Rondonia Bolivia Santa Cruz -14.270000 -60.990000 
99 LSUMZ 12378 cis Rondonia Bolivia Santa Cruz -14.270000 -60.990000 
100 LSUMZ 12760 cis Rondonia Bolivia Santa Cruz -14.270000 -60.990000 
101 LSUMZ 14683 cis Rondonia Bolivia Santa Cruz -14.486667 -60.675278 
102 LSUMZ 14752 cis Rondonia Bolivia Santa Cruz -14.486667 -60.675278 
103 LSUMZ 18175 cis Rondonia Bolivia Santa Cruz -14.833333 -60.416667 
104 LSUMZ 18534 cis Rondonia Bolivia Santa Cruz -14.840000 -60.730000 
105 FIELD 392023 cis Tapajos Brazil Mato Grosso do Norte -9.904000 -55.881000 
106 FIELD 456904 cis Xingu Brazil Para -1.950000 -51.600000 
107 FIELD 456905 cis Xingu Brazil Para -1.950000 -51.600000 
108 FIELD 456906 cis Xingu Brazil Para -1.950000 -51.600000 
109 FIELD 391347 cis Xingu Brazil Para -6.078295 -50.246776 
110 FIELD 391348 cis Xingu Brazil Para -6.078295 -50.246776 
111 FIELD 399212 cis Atlantic Forest Brazil Pernambuco -7.616667 -35.500000 
112 FIELD 395738 cis Atlantic Forest Brazil Sao Paulo -23.634273 -45.866654 
113 SAOPAULO 1667 cis Atlantic Forest Brazil Sao Paulo -23.711392 -47.418759 
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114 SAOPAULO 685 cis Atlantic Forest Brazil Sao Paulo -23.711392 -47.418759 
115 SAOPAULO 689 cis Atlantic Forest Brazil Sao Paulo -23.711392 -47.418759 
116 KU 254 cis Atlantic Forest Paraguay Caazapa -26.100000 -55.766667 
117 LSUMZ 25938 cis Atlantic Forest Paraguay Caazapa -26.100000 -55.766667 
118 KU 255 cis Atlantic Forest Paraguay Caazapa -26.379579 -55.645614 
119 KU 293 cis Atlantic Forest Paraguay Caazapa -26.379579 -55.645614 
120 KU 342 cis Atlantic Forest Paraguay Caazapa -26.379579 -55.645614 
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APPENDIX E:  LIST OF INDIVIDUAL SAMPLES OF ATTILA SPADICEUS 
 

Sample 
ID Collection Tissue 

Number 
Side of 
Andes 

Area of Endemism  
(da Silva 2005) Country State/Province/ 

Department Latitude Longitude 

1 BURKE 81460 trans North CA & W Pan Mexico Sinaloa 24.303333 -106.763336 
2 MZFC 689 trans North CA & W Pan Mexico Oaxaca 17.080559 -96.762841 
3 MZFC 690 trans North CA & W Pan Mexico Oaxaca 17.080559 -96.762841 
4 MZFC 1029 trans North CA & W Pan Mexico Oaxaca 16.243611 -97.498889 
5 FIELD 394276 trans North CA & W Pan Mexico Oaxaca 16.100000 -97.183333 
6 FIELD 394277 trans North CA & W Pan Mexico Oaxaca 16.100000 -97.183333 
7 FIELD 394278 trans North CA & W Pan Mexico Oaxaca 16.100000 -97.183333 
8 KU 530 trans North CA & W Pan Mexico Quintana Roo 20.833333 -86.900000 
9 KU 551 trans North CA & W Pan Mexico Quintana Roo 20.833333 -86.900000 
10 MZFC 532 trans North CA & W Pan Mexico Quintana Roo 20.833333 -86.900000 
11 MZFC 2153 trans North CA & W Pan Mexico Campeche 18.592778 -90.256111 
12 MZFC 2185 trans North CA & W Pan Mexico Campeche 18.592778 -90.256111 
13 MZFC 2168 trans North CA & W Pan Mexico Campeche 18.592778 -90.256111 
14 FIELD 393989 trans North CA & W Pan Mexico Veracruz 18.362000 -94.838000 
15 KU 1937 trans North CA & W Pan Mexico Campeche 18.316667 -90.133333 
16 KU 1976 trans North CA & W Pan Mexico Campeche 18.316667 -90.133333 
17 KU 2150 trans North CA & W Pan Mexico Campeche 18.316667 -90.133333 
18 MZFC 493 trans North CA & W Pan Mexico Oaxaca 17.006667 -94.689444 
19 MZFC 193 trans North CA & W Pan Mexico Chiapas 16.084167 -90.976667 
20 LSUMZ 8802 trans North CA & W Pan Belize Toledo 16.290000 -89.020000 
21 LSUMZ 55049 trans North CA & W Pan Honduras Cortés 14.872833 -87.905000 
22 LSUMZ 60697 trans North CA & W Pan Honduras Cortés 14.872833 -87.905000 
23 LSUMZ 60798 trans North CA & W Pan Honduras Cortés 14.872833 -87.905000 
24 BURKE 56335 trans North CA & W Pan Nicaragua  13.701667 -84.851669 
25 BURKE 56336 trans North CA & W Pan Nicaragua  13.701667 -84.851669 
26 BURKE 70012 trans North CA & W Pan Nicaragua  13.701667 -84.851669 
27 BURKE 70059 trans North CA & W Pan Nicaragua  13.701667 -84.851669 
28 USNM 1797 trans North CA & W Pan Panama Bocas del Toro 9.400000 -82.266700 
29 USNM 1918 trans North CA & W Pan Panama Bocas del Toro 9.385000 -82.516000 
30 USNM 1279 trans North CA & W Pan Panama Bocas del Toro 9.021536 -81.762039 
31 KU 5326 trans North CA & W Pan Panama Chiriqui 8.733333 -82.250000 
32 KU 5364 trans North CA & W Pan Panama Chiriqui 8.733333 -82.250000 
33 LSUMZ 28208 trans North CA & W Pan Panama Chiriqui 8.729000 -82.246000 
34 LSUMZ 46698 trans North CA & W Pan Panama Veraguas 7.599500 -81.723000 
35 BURKE 77019 trans Choco Panama Panama 9.357333 -79.319664 
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36 LSUMZ 28398 trans Choco Panama Panama 9.240000 -79.350000 
37 LSUMZ 28779 trans Choco Panama Colon 9.208300 -79.995500 
38 LSUMZ 26882 trans Choco Panama Panama 9.058333 -79.650833 
39 LSUMZ 2238 trans Choco Panama Darien 7.756000 -77.684000 
40 LSUMZ 29986 trans Choco Ecuador Esmeraldas 1.090861 -78.690611 
41 FIELD 457497 cis Napo Brazil Amazonas -2.049700 -67.263100 
42 LSUMZ 2843 cis Napo Peru Loreto -3.266670 -72.933333 
43 LSUMZ 2913 cis Napo Peru Loreto -3.266670 -72.933333 
44 LSUMZ 42724 cis Napo Peru Loreto -4.280833 -77.237778 
45 USNM 5026 cis Guiana Guyana Essequibo 5.500000 -60.783333 
46 USNM 16000 cis Guiana Guyana Essequibo 5.383333 -60.766667 
47 LSUMZ 48372 cis Guiana Guyana  4.932778 -59.893611 
48 USNM 19048 cis Guiana Guyana  4.932778 -59.893611 
49 USNM 19091 cis Guiana Guyana  4.932778 -59.893611 
50 LSUMZ 55279 cis Guiana Suriname  4.479444 -57.057778 
51 LSUMZ 45775 cis Guiana Suriname  3.731623 -55.983179 
52 LSUMZ 45776 cis Guiana Suriname  3.731623 -55.983179 
53 LSUMZ 45851 cis Guiana Suriname  3.731623 -55.983179 
54 USNM 22289 cis Guiana Guyana Upper Takutu - Essequibo 2.971389 -58.593611 
55 USNM 22320 cis Guiana Guyana Upper Takutu - Essequibo 2.971389 -58.593611 
56 USNM 14105 cis Guiana Guyana  2.816667 -59.816667 
57 USNM 10787 cis Guiana Guyana North West 1.383333 -58.933333 
58 MVZ 169640 cis Inambari Peru Madre de Dios -12.578500 -69.074820 
59 MVZ 169642 cis Inambari Peru Madre de Dios -12.578500 -69.074820 
60 LSUMZ 42434 cis Inambari Peru Loreto -5.313333 -76.275556 
61 LSUMZ 5419 cis Inambari Peru San Marten -6.394444 -76.340278 
62 LSUMZ 5429 cis Inambari Peru San Marten -6.394444 -76.340278 
63 LSUMZ 10613 cis Inambari Peru Ucayali -9.193056 -74.383333 
64 LSUMZ 10639 cis Inambari Peru Ucayali -9.193056 -74.383333 
65 LSUMZ 9353 cis Inambari Bolivia Pando -11.470278 -68.778611 
66 LSUMZ 9413 cis Inambari Bolivia Pando -11.470278 -68.778611 
67 LSUMZ 9506 cis Inambari Bolivia Pando -11.470278 -68.778611 
68 KU 466 cis Inambari Peru Madre de Dios -12.550000 -69.050000 
69 LSUMZ 1013 cis Inambari Bolivia La Paz -15.290000 -67.590000 
70 LSUMZ 21231 cis Inambari Bolivia La Paz -15.290000 -67.590000 
71 FIELD 389961 cis Rondonia Brazil Rondonia -9.733333 -61.883333 
72 LSUMZ 15008 cis Rondonia Bolivia Santa Cruz -13.770000 -61.950000 
73 LSUMZ 12532 cis Rondonia Bolivia Santa Cruz -14.810000 -60.810000 
74 LSUMZ 12575 cis Rondonia Bolivia Santa Cruz -14.810000 -60.810000 
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75 LSUMZ 12599 cis Rondonia Bolivia Santa Cruz -14.810000 -60.810000 
76 LSUMZ 12619 cis Rondonia Bolivia Santa Cruz -14.810000 -60.810000 
77 USNM 6994 cis Xingu Brazil Para -3.650000 -52.366667 
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APPENDIX F: LIST OF INDIVIDUAL SAMPLES OF TITYRA SEMIFASCIATA 
 

Sample 
ID Collection Tissue 

Number 
Side of 
Andes 

Area of Endemism  
(da Silva 2005) Country State/Province/ 

Department Latitude Longitude 

1 BURKE 81149 trans NCA Mexico Sinaloa 24.303333 -106.763336 
2 MZFC CONY308 trans NCA Mexico San Luis Potosi 22.133333 -99.433333 
3 MZFC HGO147 trans NCA Mexico Hidalgo 21.000000 -99.133333 
4 FIELD 393861 trans NCA Mexico Jalisco 19.550000 -104.230000 
5 MZFC B2203 trans NCA Mexico Campeche 18.592778 -90.256111 
6 LSUMZ 8754 trans NCA Belize Toledo 16.290000 -89.020000 
7 KU 6012 trans NCA El Salvador Sonsonate 13.821000 -89.653000 
8 BURKE 69160 trans NCA Nicarauga Granada 11.766666 -85.958336 
9 FIELD 393052 trans NCA Costa Rica  10.833333 -85.050000 
10 LSUMZ 27268 trans NCA Costa Rica Alajuela 10.833333 -85.050000 
11 AMNH 3682 trans NCA Costa Rica Puntarenas 9.450000 -84.150000 
12 BURKE 76942 trans NCA Panama Panama 9.387500 -79.343170 

13 (GENBAN
K) EF212894 trans NCA Panama Bocas del Toro 9.021536 -81.762039 

14 LSUMZ 28203 trans NCA Panama Chiriqui 8.729000 -82.246000 
15 LSUMZ 28204 trans NCA Panama Chiriqui 8.729000 -82.246000 
16 LSUMZ 28667 trans CHOC Panama Colon 9.208300 -79.995500 
17 LSUMZ 28668 trans CHOC Panama Colon 9.208300 -79.995500 
18 LSUMZ 28670 trans CHOC Panama Colon 9.208300 -79.995500 
19 LSUMZ 28675 trans CHOC Panama Colon 9.208300 -79.995500 
20 LSUMZ 28677 trans CHOC Panama Colon 9.208300 -79.995500 
21 ANSP 2326 trans CHOC Ecuador Esmeraldas 1.030000 -78.580000 
22 ANSP 2377 trans CHOC Ecuador Esmeraldas 1.030000 -78.580000 
23 LSUMZ 12007 trans CHOC Ecuador Esmeraldas 0.866667 -78.550000 
24 ANSP 1546 cis Napo Ecuador Morona-Santiago -3.400000 -78.550000 
25 FIELD 391534 cis GUY Brazil Amapa 1.650000 -50.916667 
26 FIELD 391535 cis GUY Brazil Amapa 1.601667 -50.898333 
27 LSUMZ 42582 cis iNAM Peru Loreto -5.313333 -76.275556 
28 LSUMZ 40435 cis INAM Peru Loreto -7.594444 -75.916111 
29 LSUMZ 40861 cis INAM Peru Loreto -7.594444 -75.916111 
30 LSUMZ 10608 cis INAM Peru Ucayali -9.193056 -74.383333 
31 LSUMZ 1990 cis INAM Peru Pasco -10.410833 -74.964722 
32 LSUMZ 9434 cis INAM Bolivia Pando -11.470278 -68.778611 
33 MVZ 169530 cis INAM Peru Madre de Dios -12.600000 -69.072890 
34 FIELD 433665 cis INAM Peru Cuzco -13.016667 -71.483333 



 126 

Appendix F cont. 
35 FIELD 391193 cis INAM Bolivia La Paz -13.750000 -68.150000 
36 LSUMZ 22812 cis INAM Bolivia La Paz -15.188056 -68.255000 
37 LSUMZ 14748 cis ROND Bolivia Santa Cruz -14.486667 -60.675278 
38 LSUMZ 18171 cis ROND Bolivia Santa Cruz -14.833333 -60.416667 
39 LSUMZ 18275 cis ROND Bolivia Santa Cruz -14.833333 -60.416667 
40 LSUMZ 38928 cis ROND Bolivia Cochabamba -17.146389 -65.766880 
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